Thomas J. Smyth
Institute of Technology, Sligo
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Thomas J. Smyth.
Applied Microbiology and Biotechnology | 2010
Ibrahim M. Banat; Andrea Franzetti; Isabella Gandolfi; Giuseppina Bestetti; Maria Giovanna Martinotti; Letizia Fracchia; Thomas J. Smyth; Roger Marchant
Microorganisms synthesise a wide range of surface-active compounds (SAC), generally called biosurfactants. These compounds are mainly classified according to their molecular weight, physico-chemical properties and mode of action. The low-molecular-weight SACs or biosurfactants reduce the surface tension at the air/water interfaces and the interfacial tension at oil/water interfaces, whereas the high-molecular-weight SACs, also called bioemulsifiers, are more effective in stabilising oil-in-water emulsions. Biosurfactants are attracting much interest due to their potential advantages over their synthetic counterparts in many fields spanning environmental, food, biomedical, and other industrial applications. Their large-scale application and production, however, are currently limited by the high cost of production and by limited understanding of their interactions with cells and with the abiotic environment. In this paper, we review the current knowledge and the latest advances in biosurfactant applications and the biotechnological strategies being developed for improving production processes and future potential.
Food Chemistry | 2013
Sinéad Lordan; Thomas J. Smyth; Anna Soler-Vila; Catherine Stanton; R. Paul Ross
To date, numerous studies have reported on the antidiabetic properties of various plant extracts through inhibition of carbohydrate-hydrolysing enzymes. The objective of this research was to evaluate extracts of seaweeds for α-amylase and α-glucosidase inhibitory effects. Cold water and ethanol extracts of 15 seaweeds were initially screened and from this, five brown seaweed species were chosen. The cold water and ethanol extracts of Ascophyllum nodosum had the strongest α-amylase inhibitory effect with IC50 values of 53.6 and 44.7 μg/ml, respectively. Moreover, the extracts of Fucus vesiculosus Linnaeus were found to be potent inhibitors of α-glucosidase with IC50 values of 0.32 and 0.49 μg/ml. The observed effects were associated with the phenolic content and antioxidant activity of the extracts, and the concentrations used were below cytotoxic levels. Overall, our findings suggest that brown seaweed extracts may limit the release of simple sugars from the gut and thereby alleviate postprandial hyperglycaemia.
International Journal of Antimicrobial Agents | 2009
Thomas J. Smyth; W.F. Smyth
The antimicrobial activities of 43 naturally occurring and synthetic coumarins were studied. Using a microtitre assay developed in-house, a range of Gram-positive and Gram-negative bacteria, including a hospital isolate of methicillin-resistant Staphylococcus aureus (MRSA),were utilised. The coumarins exhibiting good bioactivity (i.e. a low minimum inhibitory concentration) against two S. aureus strains were then assessed for their antimicrobial activities against a range of eight clinically isolated MRSA strains. The study showed that nearly one-half of the tested compounds displayed antimicrobial activity. Sixteen of these coumarins also possessed resistance-modifying activity, which reversed the resistance mechanism in MRSA allowing the antimicrobial oxacillin to exert an enhanced effect against an MRSA hospital strain. When tested in combination with oxacillin, 8-iodo-5,7-dihydroxycoumarin (32) had a similar activity to vancomycin, which is the current drug of choice for the treatment of MRSA infections.
International Journal of Antimicrobial Agents | 2010
F. O'Donnell; Thomas J. Smyth; W.F. Smyth
The antimicrobial activities of 60 naturally occurring and synthetic quinolines were studied. The quinolines were organised into seven structural subgroups and, using an in-house microtitre assay, were tested against a range of gram-positive and gram-negative bacteria, including a hospital isolate of meticillin-resistant Staphylococcus aureus (MRSA). The quinolines exhibiting good bioactivity [i.e. low minimum inhibitory concentration (MIC)] against two S. aureus strains were then assessed for their antimicrobial activity against a range of eight clinically isolated MRSA strains. The study showed that 30 of the tested compounds displayed antimicrobial activity, mostly against gram-positive bacteria. The effects of substituent groups on the bioactivity of these quinolines have also been discussed. The quinoline 4-hydroxy-3-iodo-quinol-2-one (11) exhibited significant antimicrobial activity, being active against the MRSA clinical isolates with MIC values comparable with the antibiotic vancomycin used in the treatment of MRSA infections. In particular, 4-hydroxy-3-iodo-quinol-2-one (11) showed MIC values of 0.097 microg/mL against an Irish hospital MRSA-1 strain and 0.049 microg/mL against a distinct MRSA strain as well as a non-typeable MRSA strain.
Food Chemistry | 2013
Owen Kenny; Thomas J. Smyth; C.M. Hewage; Nigel P. Brunton
Freeze-dried fenugreek (Trigonella foenum-graecum) seeds and bitter melon (Momordica charantia) fruit were extracted sequentially using non-polar to polar solvents, with further separation carried out on polar extracts by molecular weight cut off dialysis. The fenugreek ethyl acetate crude extract (FGE3) demonstrated the highest antioxidant activity, in terms of Trolox Equivalents (TE), for both the DPPH (35.338±0.908 mg TE/g) and FRAP (77.352±0.627 mg TE/g) assays. This extract also contained the highest phenolic content, in terms of Gallic Acid Equivalents (GAE) (106.316±0.377 mg GAE/g). Despite having considerably lower antioxidant activity than fenugreek, the highest antioxidant activities for bitter fruit were observed in the hexane (BME1) and methanol hydrophilic<3.5 kDa dialysed (BME4<3.5 kDa) extracts, while the highest phenolic content was found in the methanol hydrophilic>3.5 kDa (BME4>3.5 kDa) dialysed extract. UPLC-MS was used to quantify 18 phenolic compounds from fenugreek and 13 from bitter melon in active crude extracts. The flavonoids apigenin-7-O-glycoside (1955.55 ng/mg) and luteolin-7-O-glycoside (725.50 ng/mg) were the most abundant compounds in FGE3, while bitter melon extracts contained only small amounts of mainly phenolic acids. A further 5 fenugreek and 1 bitter melon compounds were identified in trace amounts from the same extracts, respectively.
Langmuir | 2010
Minglei Chen; J. Penfold; R. K. Thomas; Thomas J. Smyth; Amedea Perfumo; Roger Marchant; Ibrahim M. Banat; Paul Simon Stevenson; Alyn James Parry; I. Tucker; I. Grillo
The self-assembly in solution and adsorption at the air-water interface, measured by small-angle neutron scattering, SANS, and neutron reflectivity, NR, of the monorhamnose and dirhamnose rhamnolipids (R1, R2) and their mixtures, are discussed. The production of the deuterium-labeled rhamnolipids (required for the NR studies) from a Pseudomonas aeruginosa culture and their separation into the pure R1 and R2 components is described. At the air-water interface, R1 and R2 exhibit Langmuir-like adsorption isotherms, with saturated area/molecule values of about 60 and 75 Å(2), respectively. In R1/R2 mixtures, there is a strong partitioning of R1 to the surface and R2 competes less favorably because of the steric or packing constraints of the larger R2 dirhamnose headgroup. In dilute solution (<20 mM), R1 and R2 form small globular micelles, L(1), with aggregation numbers of about 50 and 30, respectively. At higher solution concentrations, R1 has a predominantly planar structure, L(α) (unilamellar, ULV, or bilamellar, BLV, vesicles) whereas R2 remains globular, with an aggregation number that increases with increasing surfactant concentration. For R1/R2 mixtures, solutions rich in R2 are predominantly micellar whereas solutions rich in R1 have a more planar structure. At an intermediate composition (60 to 80 mol % R1), there are mixed L(α)/L(1) and L(1)/L(α) regions. However, the higher preferred curvature associated with R2 tends to dominate the mixed R1/R2 microstructure and its associated phase behavior.
Food Chemistry | 2013
Michelle S. Tierney; Thomas J. Smyth; Dilip K. Rai; Anna Soler-Vila; Anna K. Croft; Nigel P. Brunton
An efficient, food-friendly process for the enrichment of macroalgal phlorotannins from solid-liquid extracts (SLE) of three brown macroalgae, namely Fucus spiralis Linnaeus, Pelvetia canaliculata (Linnaeus) Decaisne & Thuret and Ascophyllum nodosum (Linnaeus) Le Jolis, has been demonstrated. The initial utilisation of molecular weight cut-off (MWCO) dialysis generated fractions of low molecular weight (LMW) (<3.5 kDa) and of high molecular weight (HMW) (3.5-100 kDa and >100 kDa) from cold water, hot water and aqueous ethanolic SLE extracts. An enhancement of the total phenolic content (TPC), radical scavenging abilities (RSA) and ferric reducing antioxidant power (FRAP) in the HMW fractions of 3.5-100 kDa and/or >100 kDa from the cold water and aqueous ethanolic extracts was observed. The initial weak TPC, RSA and FRAP observed in the LMW fractions relative to the HMW fractions were substantially enhanced following a reverse-phase flash chromatography fractionation method. Quadrupole time-of-flight mass spectrometry (Q-Tof-MS) suggests that phlorotannins of varying degrees of phloroglucinol polymerisation are present in LMW fractions of the three brown macroalgal species. The development of a food-friendly process for the extraction and enrichment of phlorotannins from Irish macroalgae is vital to facilitate the use of this valuable resource in future developments of macroalgal-based functional foods.
Langmuir | 2010
Minglei Chen; J. Penfold; R. K. Thomas; Thomas J. Smyth; Amedea Perfumo; Roger Marchant; Ibrahim M. Banat; Paul Simon Stevenson; Alyn James Parry; I. Tucker; I. Grillo
The use of small angle neutron scattering, SANS, neutron reflectivity, NR, and surface tension to study the mixing properties of the biosurfactant rhamnolipid with a conventional anionic surfactant, sodium dodecyl 6-benzene sulfonate, LAS, is reported. The monorhamnose rhamnolipid, R1, mixes close to ideally with LAS at the air-water interface, whereas for mixtures of LAS with the dirhamnose rhamnolipid, R2, the LAS strongly partitions to the air-water interface relative to R2, probably because of the steric hindrance of the larger R2 headgroup. These trends in the binary mixtures are also reflected in the ternary R1/R2/LAS mixtures. However, for these ternary mixtures, there is also a pronounced synergy in the total adsorption, which reaches a maximum for a LAS/rhamnolipid mole ratio of about 0.6 and a R1/R2 mol ratio of about 0.5, an effect which is not observed in the binary mixtures. In solution, the R1/LAS mixtures form relatively small globular micelles, L(1), at low surfactant concentrations (<20 mM), more planar structures (lamellar, L(α), unilamellar/multilamellar vesicles, ulv/mlv) are formed at higher surfactant concentrations for R1 and LAS rich compositions, and a large mixed phase (L(α)/L(1) and L(1)/L(α)) region forms at intermediate surfactant compositions. In contrast, for the R2/LAS mixtures, the higher preferred curvature of R2 dominates the phase behavior. The predominant microstructure is in the form of small globular micelles, except for solution compositions rich in LAS (>80 mol % LAS) where more planar structures are formed. For the ternary mixtures, there is an evolution in the resulting phase behavior from one dominated by L(1) (R2 rich) to one dominated by planar structures, L(α), (R1, LAS rich), and which strongly depends upon the LAS/rhamnolipid and R1/R2 mole ratio.
Marine Drugs | 2015
Natalie Heffernan; Nigel P. Brunton; Richard J. FitzGerald; Thomas J. Smyth
Phlorotannins are a group of complex polymers of phloroglucinol (1,3,5-trihydroxybenzene) unique to macroalgae. These phenolic compounds are integral structural components of the cell wall in brown algae, but also play many secondary ecological roles such as protection from UV radiation and defense against grazing. This study employed Ultra Performance Liquid Chromatography (UPLC) with tandem mass spectrometry to investigate isomeric complexity and observed differences in phlorotannins derived from macroalgae harvested off the Irish coast (Fucus serratus, Fucus vesiculosus, Himanthalia elongata and Cystoseira nodicaulis). Antioxidant activity and total phenolic content assays were used as an index for producing phlorotannin fractions, enriched using molecular weight cut-off dialysis with subsequent flash chromatography to profile phlorotannin isomers in these macroalgae. These fractions were profiled using UPLC-MS with multiple reaction monitoring (MRM) and the level of isomerization for specific molecular weight phlorotannins between 3 and 16 monomers were determined. The majority of the low molecular weight (LMW) phlorotannins were found to have a molecular weight range equivalent to 4–12 monomers of phloroglucinol. The level of isomerization within the individual macroalgal species differed, resulting in substantially different numbers of phlorotannin isomers for particular molecular weights. F. vesiculosus had the highest number of isomers of 61 at one specific molecular mass, corresponding to 12 phloroglucinol units (PGUs). These results highlight the complex nature of these extracts and emphasize the challenges involved in structural elucidation of these compounds.
Food Chemistry | 2014
Owen Kenny; Thomas J. Smyth; D. Walsh; C.T. Kelleher; C.M. Hewage; Nigel P. Brunton
Antimicrobial properties of ethanol and water extracts from eight Asteraceae species were investigated against three Gram positive (Staphylococcus aureus, MRSA and Bacillus cereus) and two Gram negative (Escherichia coli and Salmonella typhimurium) bacterial strains. Ethanol extracts from Centaurea scabiosa, Arctium minus, Taraxacum officinale, Centaurea nigra and Cirsium palustre demonstrated antimicrobial activity against strains of S. aureus, MRSA and B. cereus (MIC=187.5-365μg/ml). Ethanol extracts also had higher antioxidant activities and phenolic content demonstrating a link between these compounds and the bioactivity of these extracts. Further investigation into the phenolic content of ethanol extracts using UPLC-MS/MS lead to the identification and quantification of numerous phenolic compounds in all species including; 18 from Cirsium arvense, 16 from Cirsium vulgare, 19 from C. palustre, 15 from C. nigra, 17 from C. scabiosa, 14 from Sonchus asper, 17 from A. minus and 11 from T. officinale.