Thomas J. Wills
University College London
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Thomas J. Wills.
The Journal of Neuroscience | 2004
Francesca Cacucci; Colin Lever; Thomas J. Wills; Neil Burgess; John O'Keefe
We report the spatial and temporal properties of a class of cells termed theta-modulated place-by-direction (TPD) cells recorded from the presubicular and parasubicular cortices of the rat. The firing characteristics of TPD cells in open-field enclosures were compared with those of the following two other well characterized cell classes in the hippocampal formation: place and head-direction cells. Unlike place cells, which code only for the animals location, or head-direction cells, which code only for the animals directional heading, TPD cells code for both the location and the head direction of the animal. Their firing is also strongly theta modulated, firing primarily at the negative-to-positive phase of the locally recorded theta wave. TPD theta modulation is significantly stronger than that of place cells. In contrast, the firing of head-direction cells is not modulated by theta at all. In repeated exposures to the same environment, the locational and directional signals of TPD cells are stable. When recorded in different environments, TPD locational and directional fields can uncouple, with the locational field shifting unpredictably (“remapping”), whereas the directional preference remains similar across environments.
Hippocampus | 2010
Colin Lever; Stephen Burton; Ali Jeewajee; Thomas J. Wills; Francesca Cacucci; Neil Burgess; John O'Keefe
The mechanism supporting the role of the hippocampal formation in novelty detection remains controversial. A comparator function has been variously ascribed to CA1 or subiculum, whereas the theta rhythm has been suggested to separate neural firing into encoding and retrieval phases. We investigated theta phase of firing in principal cells in subiculum and CA1 as rats foraged in familiar and novel environments. We found that the preferred theta phase of firing in CA1, but not subiculum, was shifted to a later phase of the theta cycle during environmental novelty. Furthermore, the amount of phase shift elicited by environmental change correlated with the extent of place cell remapping in CA1. Our results support a relationship between theta phase and novelty‐induced plasticity in CA1.
Frontiers in Neural Circuits | 2012
Thomas J. Wills; Caswell Barry; Francesca Cacucci
Understanding the development of the neural circuits subserving specific cognitive functions such as navigation remains a central problem in neuroscience. Here, we characterize the development of grid cells in the medial entorhinal cortex, which, by nature of their regularly spaced firing fields, are thought to provide a distance metric to the hippocampal neural representation of space. Grid cells emerge at the time of weaning in the rat, at around 3 weeks of age. We investigated whether grid cells in young rats are functionally equivalent to those observed in the adult as soon as they appear, or if instead they follow a gradual developmental trajectory. We find that, from the very youngest ages at which reproducible grid firing is observed (postnatal day 19): grid cells display adult-like firing fields that tessellate to form a coherent map of the local environment; that this map is universal, maintaining its internal structure across different environments; and that grid cells in young rats, as in adults, also encode a representation of direction and speed. To further investigate the developmental processes leading up to the appearance of grid cells, we present data from individual medial entorhinal cortex cells recorded across more than 1 day, spanning the period before and after the grid firing pattern emerged. We find that increasing spatial stability of firing was correlated with increasing gridness.
The Journal of Neuroscience | 2007
Francesca Cacucci; Thomas J. Wills; Colin Lever; Karl Peter Giese; John O'Keefe
Place cells in hippocampal area CA1 are essential for spatial learning and memory. Here, we examine whether daily exposure to a previously unexplored environment can alter place cell properties. We demonstrate two previously unreported slowly developing plasticities in mouse place fields: both the spatial tuning and the trial-to-trial reproducibility of CA1 place fields improve over days. We asked whether these two components of improved spatial coding rely on the α-isoform of the calcium/calmodulin-dependent protein kinase II (αCaMKII) autophosphorylation, an effector mechanism of NMDA receptor-dependent long-term potentiation and an essential molecular process for spatial memory formation. We show that, in mice with deficient autophosphorylation of αCaMKII, the spatial tuning of place fields is initially similar to that of wild-type mice, but completely fails to show the experience-dependent increase over days. In contrast, place field reproducibility in the mutants, although impaired, does show the experience-dependent increase over days. Consequently, the progressive improvement in spatial coding in new hippocampal place cell maps depends on the existence of two molecularly dissociable, experience-dependent processes.
Current Biology | 2016
Guifen Chen; Daniel Manson; Francesca Cacucci; Thomas J. Wills
Summary Grid cells are spatially modulated neurons within the medial entorhinal cortex whose firing fields are arranged at the vertices of tessellating equilateral triangles [1]. The exquisite periodicity of their firing has led to the suggestion that they represent a path integration signal, tracking the organism’s position by integrating speed and direction of movement [2, 3, 4, 5, 6, 7, 8, 9, 10]. External sensory inputs are required to reset any errors that the path integrator would inevitably accumulate. Here we probe the nature of the external sensory inputs required to sustain grid firing, by recording grid cells as mice explore familiar environments in complete darkness. The absence of visual cues results in a significant disruption of grid cell firing patterns, even when the quality of the directional information provided by head direction cells is largely preserved. Darkness alters the expression of velocity signaling within the entorhinal cortex, with changes evident in grid cell firing rate and the local field potential theta frequency. Short-term (<1.5 s) spike timing relationships between grid cell pairs are preserved in the dark, indicating that network patterns of excitatory and inhibitory coupling between grid cells exist independently of visual input and of spatially periodic firing. However, we find no evidence of preserved hexagonal symmetry in the spatial firing of single grid cells at comparable short timescales. Taken together, these results demonstrate that visual input is required to sustain grid cell periodicity and stability in mice and suggest that grid cells in mice cannot perform accurate path integration in the absence of reliable visual cues.
Neuron | 2015
Laurenz Muessig; Jonas Hauser; Thomas J. Wills; Francesca Cacucci
Summary Place cell firing relies on information about self-motion and the external environment, which may be conveyed by grid and border cells, respectively. Here, we investigate the possible contributions of these cell types to place cell firing, taking advantage of a developmental time window during which stable border cell, but not grid cell, inputs are available. We find that before weaning, the place cell representation of space is denser, more stable, and more accurate close to environmental boundaries. Boundary-responsive neurons such as border cells may, therefore, contribute to stable and accurate place fields in pre-weanling rats. By contrast, place cells become equally stable and accurate throughout the environment after weaning and in adulthood. This developmental switch in place cell accuracy coincides with the emergence of the grid cell network in the entorhinal cortex, raising the possibility that grid cells contribute to stable place fields when an organism is far from environmental boundaries.
Philosophical Transactions of the Royal Society B | 2013
Sarah Stewart; Ali Jeewajee; Thomas J. Wills; Neil Burgess; Colin Lever
The spatial mapping function of the hippocampal formation is likely derived from two sets of information: one based on the external environment and the other based on self-motion. Here, we further characterize ‘boundary vector cells’ (BVCs) in the rat subiculum, which code space relative to one type of cue in the external environment: boundaries. We find that the majority of cells with fields near the perimeter of a walled environment exhibit an additional firing field when an upright barrier is inserted into the walled environment in a manner predicted by the BVC model. We use this property of field repetition as a heuristic measure to define BVCs, and characterize their spatial and temporal properties. In further tests, we find that subicular BVCs typically treat drop edges similarly to walls, including exhibiting field repetition when additional drop-type boundaries are added to the testing environment. In other words, BVCs treat both kinds of edge as environmental boundaries, despite their dissimilar sensory properties. Finally, we also report the existence of ‘boundary-off cells’, a new class of boundary-coding cells. These cells fire everywhere except where a given BVC might fire.
Current Biology | 2015
Hui Min Tan; Joshua Pope Bassett; John O’Keefe; Francesca Cacucci; Thomas J. Wills
Summary Head direction (HD) cells are neurons found in the hippocampal formation and connected areas that fire as a function of an animal’s directional orientation relative to its environment [1, 2]. They integrate self-motion and environmental sensory information to update directional heading [3]. Visual landmarks, in particular, exert strong control over the preferred direction of HD cell firing [4]. The HD signal has previously been shown to appear adult-like as early as postnatal day 16 (P16) in the rat pup, just after eye opening and coinciding with the first spontaneous exploration of its environment [5, 6]. In order to determine whether the HD circuit can begin its organization prior to the onset of patterned vision, we recorded from the anterodorsal thalamic nucleus (ADN) and its postsynaptic target in the hippocampal formation, the dorsal pre-subiculum (PrSd), before and after eye opening in pre-weanling rats. We find that HD cells can be recorded at the earliest age sampled (P12), several days before eye opening. However, this early HD signal displays low directional information content and lacks stability both within and across trials. Following eye opening, the HD system matures rapidly, as more cells exhibit directional firing, and the quality and reliability of the directional signal improves dramatically. Cue-rotation experiments show that a prominent visual landmark is able to control HD responses within 24 hr of eye opening. Together, the results suggest that the directional network can be organized independently of visual spatial information while demonstrating the importance of patterned vision for accurate and reliable orientation in space.
Philosophical Transactions of the Royal Society B | 2013
Thomas J. Wills; Laurenz Muessig; Francesca Cacucci
The role of the hippocampal formation in spatial cognition is thought to be supported by distinct classes of neurons whose firing is tuned to an organisms position and orientation in space. In this article, we review recent research focused on how and when this neural representation of space emerges during development: each class of spatially tuned neurons appears at a different age, and matures at a different rate, but all the main spatial responses tested so far are present by three weeks of age in the rat. We also summarize the development of spatial behaviour in the rat, describing how active exploration of space emerges during the third week of life, the first evidence of learning in formal tests of hippocampus-dependent spatial cognition is observed in the fourth week, whereas fully adult-like spatial cognitive abilities require another few weeks to be achieved. We argue that the development of spatially tuned neurons needs to be considered within the context of the development of spatial behaviour in order to achieve an integrated understanding of the emergence of hippocampal function and spatial cognition.
Current Opinion in Neurobiology | 2014
Thomas J. Wills; Francesca Cacucci
The hippocampal formation (HF) contains a neural representation of the environment, based on the activity of several classes of neurons whose firing is tuned to an animals position and orientation in space. Recently, work has begun on understanding when and how this neural map of space emerges during development. Different classes of spatially tuned neurons emerge at different ages, some of them very early during development, before animals have started exploring their environment. The developmental timeline thus far uncovered has yielded insights into both the mechanisms of the ontogeny of the neural code for space, as well as how this system functions in the adult.