Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thomas J. Wolpert is active.

Publication


Featured researches published by Thomas J. Wolpert.


The Plant Cell | 2004

Purification and Characterization of Serine Proteases That Exhibit Caspase-Like Activity and Are Associated with Programmed Cell Death in Avena sativa

Warren C. Coffeen; Thomas J. Wolpert

Victoria blight of Avena sativa (oat) is caused by the fungus Cochliobolus victoriae, which is pathogenic because of the production of the toxin victorin. The victorin-induced response in sensitive A. sativa has been characterized as a form of programmed cell death (PCD) and displays morphological and biochemical features similar to apoptosis, including chromatin condensation, DNA laddering, cell shrinkage, altered mitochondrial function, and ordered, substrate-specific proteolytic events. Victorin-induced proteolysis of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) is shown to be prevented by caspase-specific and general protease inhibitors. Evidence is presented for a signaling cascade leading to Rubisco proteolysis that involves multiple proteases. Furthermore, two proteases that are apparently involved in the Rubisco proteolytic cascade were purified and characterized. These proteases exhibit caspase specificity and display amino acid sequences homologous to plant subtilisin-like Ser proteases. The proteases are constitutively present in an active form and are relocalized to the extracellular fluid after induction of PCD by either victorin or heat shock. The role of the enzymes as processive proteases involved in a signal cascade during the PCD response is discussed.


Applied and Environmental Microbiology | 2001

Green fluorescent protein is lighting up fungal biology.

J. M. Lorang; R. P. Tuori; J. P. Martinez; T. L. Sawyer; R. S. Redman; J. A. Rollins; Thomas J. Wolpert; K. B. Johnson; R. J. Rodriguez; M. B. Dickman; L. M. Ciuffetti

Prasher ([42][1]) cloned a cDNA for the green fluorescent protein (GFP) gene from the jellyfish Aequorea victoria in 1992. Shortly thereafter, to the amazement of many investigators, this gene or derivatives thereof were successfully expressed and conferred fluorescence to bacteria and


The Plant Cell | 1999

Victorin Induction of an Apoptotic/Senescence–like Response in Oats

Duroy A. Navarre; Thomas J. Wolpert

Victorin is a host-selective toxin produced by Cochliobolus victoriae, the causal agent of victoria blight of oats. Previously, victorin was shown to be bound specifically by two proteins of the mitochondrial glycine decarboxylase complex, at least one of which binds victorin only in toxin-sensitive genotypes in vivo. This enzyme complex is involved in the photorespiratory cycle and is inhibited by victorin, with an effective concentration for 50% inhibition of 81 pM. The photorespiratory cycle begins with ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), and victorin was found to induce a specific proteolytic cleavage of the Rubisco large subunit (LSU). Leaf slices incubated with victorin for 4 hr in the dark accumulated a form of the LSU that is cleaved after the 14th amino acid. This proteolytic cleavage was prevented by the protease inhibitors E-64 and calpeptin. Another primary symptom of victorin treatment is chlorophyll loss, which along with the specific LSU cleavage is suggestive of a victorin-induced, senescence-like response. DNA from victorin-treated leaf slices showed a pronounced laddering effect, which is typical of apoptosis. Calcium appeared to play a role in mediating the plant response to victorin because LaCl3 gave near-complete protection against victorin, preventing both leaf symptoms and LSU cleavage. The ethylene inhibitors aminooxyacetic acid and silver thiosulfate also gave significant protection against victorin-induced leaf symptoms and prevented LSU cleavage. The symptoms resulting from victorin treatment suggest that victorin causes premature senescence of leaves.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Plant disease susceptibility conferred by a “resistance” gene

Jennifer M. Lorang; Teresa A. Sweat; Thomas J. Wolpert

The molecular nature of many plant disease resistance (R) genes is known; the largest class encodes nucleotide-binding site-leucine-rich repeat (NBS-LRR) proteins that are structurally related to proteins involved in innate immunity in animals. Few genes conferring disease susceptibility, on the other hand, have been identified. Recent identification of susceptibility to the fungus Cochliobolus victoriae in Arabidopsis thaliana has enabled our cloning of LOV1, a disease susceptibility gene that, paradoxically, is a member of the NBS-LRR resistance gene family. We found LOV1 mediates responses associated with defense, but mutations in known defense response pathways do not prevent susceptibility to C. victoriae. These findings demonstrate that NBS-LRR genes can condition disease susceptibility and resistance and may have implications for R gene deployment.


Molecular Plant-microbe Interactions | 1995

Purification and immunological characterization of toxic components from cultures of Pyrenophora tritici-repentis

Robert P. Tuori; Thomas J. Wolpert; Lynda M. Ciuffetti

To facilitate the genetic analysis of pathogenicity in the wheat-Pyrenophora tritici-repentis interaction, a host-selective toxic protein, designated ToxA, was purified from culture filtrates of this fungus. ToxA was shown to be a 13.2-kDa heat-stable protein which induced visible necrosis in sensitive wheat cultivars at an average minimum concentration of 60 nM. Polyclonal antibodies raised against ToxA were shown by Western analysis and indirect immunoprecipitation to be specific for this protein. Bioassays of immunoprecipitated protein and ToxA protein eluted from polyacrylamide gels indicated that ToxA protein is the toxic agent. Other less abundant necrosis-inducing components that are chromatographically and immunologically distinct from ToxA were also detected in culture filtrates of P. tritici-repentis. These components were found in cationic and anionic protein fractions and, like ToxA, induced cultivar-specific necrosis.


The Plant Cell | 2007

Thioredoxin h5 Is Required for Victorin Sensitivity Mediated by a CC-NBS-LRR Gene in Arabidopsis

Teresa A. Sweat; Thomas J. Wolpert

The fungus Cochliobolus victoriae causes Victoria blight of oats (Avena sativa) and is pathogenic due to its production of victorin, which induces programmed cell death in sensitive plants. Victorin sensitivity has been identified in Arabidopsis thaliana and is conferred by the dominant gene LOCUS ORCHESTRATING VICTORIN EFFECTS1 (LOV1), which encodes a coiled-coil–nucleotide binding site–leucine-rich repeat protein. We isolated 63 victorin-insensitive mutants, including 59 lov1 mutants and four locus of insensitivity to victorin1 (liv1) mutants. The LIV1 gene encodes thioredoxin h5 (ATTRX5), a member of a large family of disulfide oxidoreductases. To date, very few plant thioredoxins have been assigned specific, nonredundant functions. We found that the victorin response was highly specific to ATTRX5, as the closely related ATTRX3 could only partially compensate for loss of ATTRX5, even when overexpressed. We also created chimeric ATTRX5/ATTRX3 proteins, which identified the central portion of the protein as important for conferring specificity to ATTRX5. Furthermore, we found that ATTRX5, but not ATTRX3, is highly induced in sensitive Arabidopsis following victorin treatment. Finally, we determined that only the first of the two active-site Cys residues in ATTRX5 is required for the response to victorin, suggesting that ATTRX5 function in the victorin pathway involves an atypical mechanism of action.


The Plant Cell | 1995

Inhibition of the glycine decarboxylase multienzyme complex by the host-selective toxin victorin.

Duroy A. Navarre; Thomas J. Wolpert

Victoria blight of oats is caused by the fungus Cochliobolus victoriae. This fungus is pathogenic due to its ability to produce the host-selective toxin victorin. We previously identified a 100-kD protein that binds victorin in vivo only in susceptible genotypes and a 15-kD protein that binds victorin in vivo in both susceptible and resistant genotypes. Recently, we determined that the oat 100-kD victorin binding protein is the P protein of the glycine decarboxylase complex (GDC). In this study, we examined the effect of victorin on glycine decarboxylase activity (GDA). Victorin was a potent in vivo inhibitor of GDA. Leaf slices pretreated for 2 hr with victorin displayed an effective concentration for 50% inhibition (EC50) of 81 pM for GDA. Victorin inhibited the glycine-bicarbonate exchange reaction in vitro with an EC50 of 23 microM. We also identified a 15-kD mitochondrial protein that bound victorin in a ligand-specific manner. Based on amino acid sequence analysis, we concluded that the 15-kD mitochondrial protein is the H protein component of the GDC. Thus, victorin specifically binds to two components of the GDC. GDA in resistant tissue treated with 100 micrograms/mL victorin for 5 hr was inhibited 26%, presumably as a consequence of the interaction of victorin with the H protein. Victorin had no detectable effect on GDA in isolated mitochondria, apparently due to the inability of isolated mitochondria to import victorin. These results suggest that the interaction of victorin with the GDC is central to victorins mode of action.


Molecular Plant-microbe Interactions | 2009

A Host-Selective Toxin of Pyrenophora tritici-repentis, Ptr ToxA, Induces Photosystem Changes and Reactive Oxygen Species Accumulation in Sensitive Wheat

Viola A. Manning; Ashley L. Chu; Joshua E. Steeves; Thomas J. Wolpert; Lynda M. Ciuffetti

Ptr ToxA (ToxA) is a proteinaceous necrotizing host-selective toxin produced by Pyrenophora tritici-repentis, a fungal pathogen of wheat (Triticum aestivum). In this study, we have found that treatment of ToxA-sensitive wheat leaves with ToxA leads to a light-dependent accumulation of reactive oxygen species (ROS) that correlates with the onset of necrosis. Furthermore, the accumulation of ROS and necrosis could be inhibited by the antioxidant N-acetyl cysteine, providing further evidence that ROS production is required for necrosis. Microscopic evaluation of ToxA-treated whole-leaf tissue indicated that ROS accumulation occurs in the chloroplasts. Analysis of total protein extracts from ToxA-treated leaves showed a light-dependent reduction of the chloroplast protein RuBisCo. In addition, Blue native-gel electrophoresis followed by sodium dodecyl sulfate polyacrylamide gel electrophoresis analysis revealed that ToxA induces changes in photosystem I (PSI) and photosystem II (PSII) in the absence of light, and therefore, the absence of ROS. When ToxA-treated leaves were exposed to light, all proteins in both PSI and PSII were extremely reduced. We propose that ToxA induces alterations in PSI and PSII affecting photosynthetic electron transport, which subsequently leads to ROS accumulation and cell death when plants are exposed to light.


Molecular Plant-microbe Interactions | 2000

Heterologous Expression of Functional Ptr ToxA

Robert P. Tuori; Thomas J. Wolpert; Lynda M. Ciuffetti

Ptr ToxA, a proteinaceous host-selective toxin (HST) produced by the fungus Pyrenophora tritici-repentis, was expressed in Escherichia coli and purified as a polyhistidine-tagged, fusion protein (NC-FP). NC-FP, consisting of both the N and C domains of the ToxA open reading frame (ORF), is produced as an insoluble protein in E. coli at approximately 10 to 16 mg per liter of culture. Following in vitro refolding, NC-FP elicits cultivar-specific necrosis in wheat, with a specific activity similar to that of native Ptr ToxA. A fusion protein consisting of only the C domain has approximately 10 to 20% of the activity of native Ptr ToxA. These data suggest that (i) the N domain is important for maximal activity of Ptr ToxA, (ii) the N domain does not function to eliminate activity of the protoxin, and (iii) post-translational modifications of Ptr ToxA are not essential for activity. A C domain construct with a cysteine residue mutated to glycine is inactive. This, plus the observation that toxin activity is sensitive to reducing agents, provides evidence that the two cysteine residues in Ptr ToxA are involved in a disulfide bond that is essential for activity. The heterologous expression of Ptr ToxA provides a valuable tool for addressing a number of issues such as receptor binding studies, structure/function studies, and screening wheat cultivars for disease resistance.


Molecular Plant-microbe Interactions | 2008

Characterization of natural and induced variation in the LOV1 gene, a CC-NB-LRR gene conferring victorin sensitivity and disease susceptibility in Arabidopsis.

Teresa A. Sweat; Jennifer M. Lorang; Erica G. Bakker; Thomas J. Wolpert

The fungus Cochliobolus victoriae, the causal agent of Victoria blight, produces a compound called victorin that is required for pathogenicity of the fungus. Victorin alone reproduces disease symptoms on sensitive plants. Victorin sensitivity and susceptibility to C. victoriae were originally described on oats but have since been identified on Arabidopsis thaliana. Victorin sensitivity and disease susceptibility in Arabidopsis are conferred by LOV1, a coiled-coil-nucleotide-binding-leucine-rich repeat (CC-NB-LRR) protein. We sequenced the LOV1 gene from 59 victorin-insensitive mutants and found that the spectrum of mutations causing LOV1 loss of function was similar to that found to cause loss of function of RPM1, a CC-NB-LRR resistance protein. Also, many of the mutated residues in LOV1 are in conserved motifs required for resistance protein function. These data indicate that LOV1 may have a mechanism of action similar to resistance proteins. Victorin sensitivity was found to be the prevalent phenotype in a survey of 30 Arabidopsis ecotypes, and we found very little genetic variation among LOV1 alleles. As selection would not be expected to preserve a functional LOV1 gene to confer victorin sensitivity and disease susceptibility, we propose that LOV1 may function as a resistance gene to a naturally-occurring pathogen of Arabidopsis.

Collaboration


Dive into the Thomas J. Wolpert's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Duroy A. Navarre

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. M. Lorang

Oregon State University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge