Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thomas Jue is active.

Publication


Featured researches published by Thomas Jue.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 1999

Comparative analysis of NMR and NIRS measurements of intracellular PO2 in human skeletal muscle.

Tuan Khanh Tran; Napapon Sailasuta; Ulrike Kreutzer; Ralph E. Hurd; Youngran Chung; Paul A. Molé; Shinya Kuno; Thomas Jue

1H NMR has detected both the deoxygenated proximal histidyl NδH signals of myoglobin (deoxyMb) and deoxygenated Hb (deoxyHb) from human gastrocnemius muscle. Exercising the muscle or pressure cuffing the leg to reduce blood flow elicits the appearance of the deoxyMb signal, which increases in intensity as cellular[Formula: see text] decreases. The deoxyMb signal is detected with a 45-s time resolution and reaches a steady-state level within 5 min of pressure cuffing. Its desaturation kinetics match those observed in the near-infrared spectroscopy (NIRS) experiments, implying that the NIRS signals are actually monitoring Mb desaturation. That interpretation is consistent with the signal intensity and desaturation of the deoxyHb proximal histidyl NδH signal from the β-subunit at 73 parts per million. The experimental results establish the feasibility and methodology to observe the deoxyMb and Hb signals in skeletal muscle, help clarify the origin of the NIRS signal, and set a stage for continuing study of O2regulation in skeletal muscle.1H NMR has detected both the deoxygenated proximal histidyl NdeltaH signals of myoglobin (deoxyMb) and deoxygenated Hb (deoxyHb) from human gastrocnemius muscle. Exercising the muscle or pressure cuffing the leg to reduce blood flow elicits the appearance of the deoxyMb signal, which increases in intensity as cellular PO2 decreases. The deoxyMb signal is detected with a 45-s time resolution and reaches a steady-state level within 5 min of pressure cuffing. Its desaturation kinetics match those observed in the near-infrared spectroscopy (NIRS) experiments, implying that the NIRS signals are actually monitoring Mb desaturation. That interpretation is consistent with the signal intensity and desaturation of the deoxyHb proximal histidyl NdeltaH signal from the beta-subunit at 73 parts per million. The experimental results establish the feasibility and methodology to observe the deoxyMb and Hb signals in skeletal muscle, help clarify the origin of the NIRS signal, and set a stage for continuing study of O2 regulation in skeletal muscle.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 1999

Myoglobin desaturation with exercise intensity in human gastrocnemius muscle

Paul A. Molé; Youngran Chung; Tuan Khanh Tran; Napapon Sailasuta; Ralph E. Hurd; Thomas Jue

The present study evaluated whether intracellular partial pressure of O(2) (PO(2)) modulates the muscle O(2) uptake (VO(2)) as exercise intensity increased. Indirect calorimetry followed VO(2), whereas nuclear magnetic resonance (NMR) monitored the high-energy phosphate levels, intracellular pH, and intracellular PO(2) in the gastrocnemius muscle of four untrained subjects at rest, during plantar flexion exercise with a constant load at a repetition rate of 0.75, 0.92, and 1.17 Hz, and during postexercise recovery. VO(2) increased linearly with exercise intensity and peaked at 1.17 Hz (15. 1 +/- 0.37 watts), when the subjects could maintain the exercise for only 3 min. VO(2) reached a peak value of 13.0 +/- 1.59 ml O(2). min(-1). 100 ml leg volume(-1). The (31)P spectra indicated that phosphocreatine decreased to 32% of its resting value, whereas intracellular pH decreased linearly with power output, reaching 6.86. Muscle ATP concentration, however, remained constant throughout the exercise protocol. The (1)H NMR deoxymyoglobin signal, reflecting the cellular PO(2), decreased in proportion to increments in power output and VO(2). At the highest exercise intensity and peak VO(2), myoglobin was approximately 50% desaturated. These findings, taken together, suggest that the O(2) gradient from hemoglobin to the mitochondria can modulate the O(2) flux to meet the increased VO(2) in exercising muscle, but declining cellular PO(2) during enhanced mitochondrial respiration suggests that O(2) availability is not limiting VO(2) during exercise.The present study evaluated whether intracellular partial pressure of O2 ([Formula: see text]) modulates the muscle O2 uptake (V˙o 2) as exercise intensity increased. Indirect calorimetry followedV˙o 2, whereas nuclear magnetic resonance (NMR) monitored the high-energy phosphate levels, intracellular pH, and intracellular[Formula: see text] in the gastrocnemius muscle of four untrained subjects at rest, during plantar flexion exercise with a constant load at a repetition rate of 0.75, 0.92, and 1.17 Hz, and during postexercise recovery.V˙o 2 increased linearly with exercise intensity and peaked at 1.17 Hz (15.1 ± 0.37 watts), when the subjects could maintain the exercise for only 3 min.V˙o 2 reached a peak value of 13.0 ± 1.59 ml O2 ⋅ min-1 ⋅ 100 ml leg volume-1. The31P spectra indicated that phosphocreatine decreased to 32% of its resting value, whereas intracellular pH decreased linearly with power output, reaching 6.86. Muscle ATP concentration, however, remained constant throughout the exercise protocol. The 1H NMR deoxymyoglobin signal, reflecting the cellular[Formula: see text], decreased in proportion to increments in power output andV˙o 2. At the highest exercise intensity and peakV˙o 2, myoglobin was ∼50% desaturated. These findings, taken together, suggest that the O2 gradient from hemoglobin to the mitochondria can modulate the O2flux to meet the increasedV˙o 2 in exercising muscle, but declining cellular [Formula: see text]during enhanced mitochondrial respiration suggests that O2 availability is not limitingV˙o 2 during exercise.


The Journal of Experimental Biology | 2010

Myoglobin's old and new clothes: from molecular structure to function in living cells

Gerolf Gros; Beatrice A. Wittenberg; Thomas Jue

SUMMARY Myoglobin, a mobile carrier of oxygen, is without a doubt an important player central to the physiological function of heart and skeletal muscle. Recently, researchers have surmounted technical challenges to measure Mb diffusion in the living cell. Their observations have stimulated a discussion about the relative contribution made by Mb-facilitated diffusion to the total oxygen flux. The calculation of the relative contribution, however, depends upon assumptions, the cell model and cell architecture, cell bioenergetics, oxygen supply and demand. The analysis suggests that important differences can be observed whether steady-state or transient conditions are considered. This article reviews the current evidence underlying the evaluation of the biophysical parameters of myoglobin-facilitated oxygen diffusion in cells, specifically the intracellular concentration of myoglobin, the intracellular diffusion coefficient of myoglobin and the intracellular myoglobin oxygen saturation. The review considers the role of myoglobin in oxygen transport in vertebrate heart and skeletal muscle, in the diving seal during apnea as well as the role of the analogous leghemoglobin of plants. The possible role of myoglobin in intracellular fatty acid transport is addressed. Finally, the recent measurements of myoglobin diffusion inside muscle cells are discussed in terms of their implications for cytoarchitecture and microviscosity in these cells and the identification of intracellular impediments to the diffusion of proteins inside cells. The recent experimental data then help to refine our understanding of Mb function and establish a basis for future investigation.


Biophysical Journal | 1997

Myoglobin and hemoglobin rotational diffusion in the cell

Dong Wang; Ulrike Kreutzer; Youngran Chung; Thomas Jue

The detection of the 1H NMR signal of myoglobin (Mb) in tissue opens an opportunity to examine its cellular diffusion property, which is central to its purported role in facilitating oxygen transport. In perfused myocardium the field-dependent transverse relaxation analysis of the deoxy Mb proximal histidyl NdeltaH indicates that the Mb rotational correlation time in the cell is only approximately 1.4 times longer than it is in solution. Such a mobility is consistent with the theory that Mb facilitates oxygen diffusion from the sarcoplasm to the mitochondria. The microviscosities of the erythrocyte and myocyte environment are different. The hemoglobin (Hb) rotational correlation time is 2.2 longer in the cell than in solution. Because both the overlapping Hb and Mb signals are visible in vivo, a relaxation-based NMR strategy has been developed to discriminate between them.


The Journal of Physiology | 2007

Myoglobin translational diffusion in rat myocardium and its implication on intracellular oxygen transport.

Ping Chang Lin; Ulrike Kreutzer; Thomas Jue

Current theory of respiratory control invokes a role of myoglobin (Mb)‐facilitated O2 diffusion in regulating the intracellular O2 flux, provided Mb diffusion can compete effectively with free O2 diffusion. Pulsed‐field gradient NMR methods have now followed gradient‐dependent changes in the distinct 1H NMR γ CH3 Val E11 signal of MbO2 in perfused rat myocardium to obtain the endogenous Mb translational diffusion coefficient (DMb) of 4.24 × 10−7 cm2 s−1 at 22°C. The DMb matches precisely the value predicted by in vivo NMR rotational diffusion measurements of Mb and shows no orientation preference. Given values in the literature for the Kroghs free O2 diffusion coefficient (K0), myocardial Mb concentration and a partial pressure of O2 that half saturates Mb (P50), the analysis yields an equipoise diffusion P  O 2 of 1.77 mmHg, where Mb and free O2 contribute equally to the O2 flux. In the myocardium, Mb‐facilitated O2 diffusion contributes increasingly more than free O2 diffusion when the P  O 2 falls below 1.77 mmHg. In skeletal muscle, the P  O 2 must fall below 5.72 mmHg. Altering the Mb P50 induces modest change. Mb‐facilitated diffusion has a higher poise in skeletal muscle than in myocardium. Because the basal P  O 2 hovers around 10 mmHg, Mb does not have a predominant role in facilitating O2 transport in myocardium but contributes significantly only when cellular oxygen falls below the equipoise diffusion P  O 2.


American Journal of Physiology-cell Physiology | 1998

Metabolic fluctuation during a muscle contraction cycle

Youngran Chung; Robert B. Sharman; Richard C. Carlsen; Steven W. Unger; Douglas B. Larson; Thomas Jue

Gated31P-nuclear magnetic resonance followed the metabolic fluctuation in rat gastrocnemius muscle during a contraction cycle. Within 16 ms after stimulation, the phosphocreatine (PCr) level drops 11.3% from its reference state. The PCr minimum corresponds closely to the time of maximum force contraction. Pi increases stoichiometrically, while ATP remains constant. During a twitch, PCr hydrolysis produces 3.1 μmol ATP/g tissue, which is substantially higher than the reported 0.3 μmol ATP ⋅ twitch-1 ⋅ g tissue-1 derived from steady-state experiments. The results reveal that a substantial energy fluctuation accompanies a muscle twitch.


The Journal of Experimental Biology | 2008

Blood flow and metabolic regulation in seal muscle during apnea

Paul J. Ponganis; Ulrike Kreutzer; T. K. Stockard; Ping Chang Lin; Napapon Sailasuta; Tuan Khan Tran; Ralph E. Hurd; Thomas Jue

SUMMARY In order to examine myoglobin (Mb) function and metabolic responses of seal muscle during progressive ischemia and hypoxemia, Mb saturation and high-energy phosphate levels were monitored with NMR spectroscopy during sleep apnea in elephant seals (Mirounga angustirostris). Muscle blood flow (MBF) was measured with laser-Doppler flowmetry (LDF). During six, spontaneous, 8–12 min apneas of an unrestrained juvenile seal, apneic MBF decreased to 46±10% of the mean eupneic MBF. By the end of apnea, MBF reached 31±8% of the eupneic value. The t1/2 for 90% decline in apneic MBF was 1.9±1.2 min. The initial post-apneic peak in MBF occurred within 0.20±0.04 min after the start of eupnea. NMR measurements revealed that Mb desaturated rapidly from its eupenic resting level to a lower steady state value within 4 min after the onset of apnea at rates between 1.7±1.0 and 3.8±1.5% min–1, which corresponded to a muscle O2 depletion rate of 1–2.3 ml O2 kg–1 min–1. High-energy phosphate levels did not change with apnea. During the transition from apnea to eupnea, Mb resaturated to 95% of its resting level within the first minute. Despite the high Mb concentration in seal muscle, experiments detected Mb diffusing with a translational diffusion coefficient of 4.5×10–7 cm2 s–1, consistent with the value observed in rat myocardium. Equipoise PO2 analysis revealed that Mb is the predominant intracellular O2 transporter in elephant seals during eupnea and apnea.


American Journal of Physiology-heart and Circulatory Physiology | 1998

Carbon monoxide inhibition of regulatory pathways in myocardium

Alan Glabe; Youngran Chung; Dejun Xu; Thomas Jue

The 1H nuclear magnetic resonance (NMR) myoglobin (Mb) Val E11 signal provides a unique opportunity to assess the functional role of Mb in the cell. On CO infusion in perfused myocardium, the MbO2 signal at -2.76 parts per million (ppm) gradually disappears, whereas the corresponding MbCO signal emerges at -2.26 ppm, reflecting the state of Mb inhibition. Up to 76.8% MbCO saturation, myocardial O2 consumption (MVO2) remains constant, whereas the rate-pressure product (RPP) has already dropped to 92% of the control level. At 87.6% MbCO saturation, the lactate formation rate has increased by a factor of two, and MVO2 begins to decline. However, the ratio CO/O2 is still 1/10, well below the inhibition threshold for cytochrome oxidase activity. The MVO2 decline in the face of an adequate O2 supply and an unperturbed high-energy phosphate level implies that Mb may play a role in directly regulating respiration, mediated potentially by a shift in NADH/NAD. Although nitrite inhibits Mb, nitrite also directly affects the myocardial function.The 1H nuclear magnetic resonance (NMR) myoglobin (Mb) Val E11 signal provides a unique opportunity to assess the functional role of Mb in the cell. On CO infusion in perfused myocardium, the MbO2 signal at -2.76 parts per million (ppm) gradually disappears, whereas the corresponding MbCO signal emerges at -2.26 ppm, reflecting the state of Mb inhibition. Up to 76.8% MbCO saturation, myocardial O2 consumption (MV˙o 2) remains constant, whereas the rate-pressure product (RPP) has already dropped to 92% of the control level. At 87.6% MbCO saturation, the lactate formation rate has increased by a factor of two, and MV˙o 2 begins to decline. However, the ratio CO/O2 is still 1/10, well below the inhibition threshold for cytochrome oxidase activity. The MV˙o 2 decline in the face of an adequate O2supply and an unperturbed high-energy phosphate level implies that Mb may play a role in directly regulating respiration, mediated potentially by a shift in NADH/NAD. Although nitrite inhibits Mb, nitrite also directly affects the myocardial function.


Biochemical and Biophysical Research Communications | 1980

Assignment of proximal histidyl imidazole exchangeable proton NMR resonances to individual subunits in hemoglobins A, Boston, Iwate and Milwaukee☆

Gerd N. La Mar; Kiyoshi Nagai; Thomas Jue; David L. Budd; Klaus Gersonde; Hinrich Sick; Tadashi Kagimoto; Akira Hayashi; F. Taketa

Abstract The proton nmr spectra of the synthetic valency hybrids, α 2 (β + CN) 2 , (α + CN) 2 β 2 of hemoglobin A and the natural valency hybrids of the mutant hemoglobins Boston, Iwate and Milwaukee have led to the unambiguous assignment of the two proximal histidyl imidazole exchangeable proton signals at 64 and 76 ppm to individual α and β subunits, respectively. New single non-exchangeable proton resonances detected in the extreme downfield region of the spectra of Hbs Boston and Iwate are tentatively assigned to the coordinated tyrosine of the mutated α chains.


FEBS Letters | 2008

Interaction of fatty acid with myoglobin

Renuka Sriram; Ulrike Kreutzer; Lifan Shih; Thomas Jue

Upon titration with palmitate, the 1H NMR spectra of metmyoglobin cyanide (MbCN) reveal a selective perturbation of the 8 heme methyl, consistent with a specific interaction of myoglobin (Mb) with fatty acid. Other detectable hyperfine shifted resonances of the heme group remain unchanged. Mb also enhances fatty acid solubility, as reflected in a more intense methylene peak of palmitate in Mb solution than in Tris buffer. Ligand binding analysis indicates an apparent palmitate dissociation constant (K d) of 43 μM. These results suggest that Mb can bind fatty acid and may have a role in facilitating fatty acid transport in the cell.

Collaboration


Dive into the Thomas Jue's collaboration.

Top Co-Authors

Avatar

Youngran Chung

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yasuro Furuichi

Tokyo Metropolitan University

View shared research outputs
Top Co-Authors

Avatar

Renuka Sriram

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul A. Molé

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge