Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thomas Jung is active.

Publication


Featured researches published by Thomas Jung.


Journal of Climate | 2001

North Atlantic Interdecadal Variability: Oceanic Response to the North Atlantic Oscillation (1865–1997)

Carsten Eden; Thomas Jung

Abstract In contrast to the atmosphere, knowledge about interdecadal variability of the North Atlantic circulation is relatively restricted. It is the objective of this study to contribute to understanding how the North Atlantic circulation responds to a forcing by the North Atlantic oscillation (NAO) on interdecadal timescales. For this purpose, the authors analyze observed atmospheric and sea surface temperature (SST) data along with the response of an ocean general circulation model to a realistic monthly surface flux forcing that is solely associated with the NAO for the period 1865–1997. In agreement with previous studies, it is shown that the relationship between the local forcing by the NAO and observed SST anomalies on interdecadal timescales points toward the importance of oceanic dynamics in generating SST anomalies. A comparison between observed and modeled SST anomalies reveals that the model results can be used to assess interdecadal variability of the North Atlantic circulation. The observed...


Journal of Climate | 2003

Characteristics of the Recent Eastward Shift of Interannual NAO Variability

Thomas Jung; Michael Hilmer; E. Ruprecht; Sabine Kleppek; Sergey K. Gulev; Olga Zolina

Recent observational studies have shown that the centers of action of interannual variability of the North Atlantic Oscillation (NAO) were located farther eastward during winters of the period 1978‐97 compared to previous decades of the twentieth century. In this study, which focuses on the winter season (December‐March), new diagnostics characterizing this shift are presented. Further, the importance of this shift for NAO-related interannual climate variability in the North Atlantic region is discussed. It is shown that an NAO-related eastward shift in variability can be found for a wide range of different parameters like the number of deep cyclones, near-surface air temperature, and turbulent surface heat flux throughout the North Atlantic region. By using a near-surface air temperature dataset that is homogenous with respect to the kind of observations used, it is shown that the eastward shift is not an artifact of changes in observational practices that took place around the late 1970s. Finally, an EOF-based Monte Carlo test is developed to quantify the probability of changes in the spatial structure of interannual NAO variability for a relatively short (20 yr) time series given multivariate ‘‘white noise.’’ It is estimated that the likelihood for differences in the spatial structure of the NAO between two independent 20-yr periods, which are similar (as measured by the angle and pattern correlation between two NAO patterns) to the observed differences, to occur just by chance is about 18%. From the above results it is argued that care has to be taken when conclusions about long-term properties of NAO-related climate variability are being drawn from relatively short recent observational data (e.g., 1978‐97).


Climate Dynamics | 2012

Simulating the diurnal cycle of rainfall in global climate models: resolution versus parameterization

Paul A. Dirmeyer; Benjamin A. Cash; James L. Kinter; Thomas Jung; Lawrence Marx; Masaki Satoh; Cristiana Stan; Hirofumi Tomita; Peter Towers; Nils P. Wedi; Deepthi Achuthavarier; Jennifer M. Adams; Eric L. Altshuler; Bohua Huang; Emilia K. Jin; Julia V. Manganello

The effects of horizontal resolution and the treatment of convection on simulation of the diurnal cycle of precipitation during boreal summer are analyzed in several innovative weather and climate model integrations. The simulations include: season-long integrations of the Non-hydrostatic Icosahedral Atmospheric Model (NICAM) with explicit clouds and convection; year-long integrations of the operational Integrated Forecast System (IFS) from the European Centre for Medium-range Weather Forecasts at three resolutions (125, 39 and 16xa0km); seasonal simulations of the same model at 10xa0km resolution; and seasonal simulations of the National Center for Atmospheric Research (NCAR) low-resolution climate model with and without an embedded two-dimensional cloud-resolving model in each grid box. NICAM with explicit convection simulates best the phase of the diurnal cycle, as well as many regional features such as rainfall triggered by advancing sea breezes or high topography. However, NICAM greatly overestimates mean rainfall and the magnitude of the diurnal cycle. Introduction of an embedded cloud model within the NCAR model significantly improves global statistics of the seasonal mean and diurnal cycle of rainfall, as well as many regional features. However, errors often remain larger than for the other higher-resolution models. Increasing resolution alone has little impact on the timing of daily rainfall in IFS with parameterized convection, yet the amplitude of the diurnal cycle does improve along with the representation of mean rainfall. Variations during the day in atmospheric prognostic fields appear quite similar among models, suggesting that the distinctive treatments of model physics account for the differences in representing the diurnal cycle of precipitation.


Bulletin of the American Meteorological Society | 2013

Revolutionizing Climate Modeling with Project Athena: A Multi-Institutional, International Collaboration

James L. Kinter; Benjamin A. Cash; Deepthi Achuthavarier; J. D. Adams; Eric L. Altshuler; P. Dirmeyer; B. Doty; B. Huang; E. K. Jin; Lawrence Marx; Julia V. Manganello; Cristiana Stan; T. Wakefield; T. N. Palmer; M. Hamrud; Thomas Jung; Martin Miller; Peter Towers; Nils P. Wedi; Masaki Satoh; Hiroyuki Tomita; Chihiro Kodama; Tomoe Nasuno; Kazuyoshi Oouchi; Yohei Yamada; Hiroshi Taniguchi; P. Andrews; T. Baer; M. Ezell; C. Halloy

The importance of using dedicated high-end computing resources to enable high spatial resolution in global climate models and advance knowledge of the climate system has been evaluated in an international collaboration called Project Athena. Inspired by the World Modeling Summit of 2008 and made possible by the availability of dedicated high-end computing resources provided by the National Science Foundation from October 2009 through March 2010, Project Athena demonstrated the sensitivity of climate simulations to spatial resolution and to the representation of subgrid-scale processes with horizontal resolutions up to 10 times higher than contemporary climate models. While many aspects of the mean climate were found to be reassuringly similar, beyond a suggested minimum resolution, the magnitudes and structure of regional effects can differ substantially. Project Athena served as a pilot project to demonstrate that an effective international collaboration can be formed to efficiently exploit dedicated sup...


Journal of Climate | 2001

The Link between the North Atlantic Oscillation and Arctic Sea Ice Export through Fram Strait

Thomas Jung; Michael Hilmer

Abstract Recently, Hilmer and Jung have shown that the wintertime link between the North Atlantic oscillation (NAO) and the sea ice export through Fram Strait changed from zero correlation (1958–77) to about 0.7 (1978–97) during the last four decades. In the current study, the authors focus on the question of how the two phenomena are linked in a long-term context during wintertime (December–March). This is done on a statistical basis using data from a century-scale control integration of the coupled general circulation model ECHAM4–OPYC3 along with historical sea level pressure data for the period 1908–97. From the results of this study there is less indication that a significant link on interannual and decadal timescales between the NAO and the sea ice export through Fram Strait is a characteristic property of the climate system—at least under present-day climate conditions. This missing link can be explained by a vanishing net impact of the NAO on sea ice thickness as well as sea ice drift near Fram St...


Geophysical Research Letters | 2011

Origin and predictability of the extreme negative NAO winter of 2009/10

Thomas Jung; F. Vitart; Laura Ferranti; J.-J. Morcrette

[1]xa0The winter of 2009/2010 was one of the most negative winters of the North Atlantic Oscillation (NAO) during the last 150 years. While most operational extended-range forecasting systems had difficulties in predicting the onset of the negative NAO phase, once established, extended-range forecasts were relatively skilful in predicting its persistence. Here, the origin and predictability of the unusual winter of 2009/10 are explored through numerical experimentation with the ECMWF Monthly forecasting system. More specifically, the role of anomalies in sea surface temperature (SST) and sea ice, the tropical atmospheric circulation, the stratospheric polar vortex, solar insolation and near surface temperature (proxy for snow cover) are examined. None of these anomalies is capable of producing the observed NAO anomaly, especially in terms of its magnitude. The results of this study support the hypothesis that internal atmospheric dynamical processes were responsible for the onset and persistence of the negative NAO phase during the 2009/10 winter.


Geophysical Research Letters | 2011

On the predictability of the extreme summer 2003 over Europe

A. Weisheimer; Francisco J. Doblas-Reyes; Thomas Jung; T. N. Palmer

[1]xa0The European summer 2003 is a prominent example for an extreme hot and dry season. The main mechanisms that contributed to the growth of the heat wave are still disputed and state-of-the-art climate models have difficulty to realistically simulate the extreme conditions. Here we analyse simulations using recent versions of the European Centre for Medium-Range Weather Forecasts seasonal ensemble forecasting system and present, for the first time, retrospective forecasts which simulate accurately not only the abnormal warmth but also the observed precipitation and mid-tropospheric circulation patterns. It is found that while the land surface hydrology plays a crucial role, the successful simulations also required revised formulations of the radiative and convective parameterizations. We conclude that the predictability of the event was less due to remote teleconnections effects and more due to in situ processes which helped maintain the dry surface anomalies occurring at the beginning of the summer.


Journal of Climate | 2006

Response to the Summer of 2003 Mediterranean SST Anomalies over Europe and Africa

Thomas Jung; Laura Ferranti; Adrian M. Tompkins

The sensitivity of the atmospheric circulation to the warm Mediterranean sea surface temperature (SST) anomalies observed during the summer of 2003 (July and August) is studied using the European Centre for Medium-Range Weather Forecasts (ECMWF) model. A control integration imposes climatological Mediterranean SSTs as a lower boundary condition. The first sensitivity experiment uniformly increases these Mediterranean SSTs by 2 K, the approximate mean observed in the 2003 summer season. A second experiment then investigates the additional impact of the SST distribution by imposing the observed SST summer anomaly. The response of the atmospheric circulation in the European area shows some resemblance to the observed anomaly. The weakness of this response suggests, however, that the warm Mediterranean played a minor role, if any, in maintaining the anomalous atmospheric circulation as observed in the summer of 2003. Increasing SST in the Mediterranean locally leads to an increase in precipitation, particularly in the western Mediterranean. Furthermore, significantly increased Sahelian rainfall is simulated, deriving from enhanced evaporation in the Mediterranean Sea. In the ECMWF model the anomalously high moisture is advected by the climatological Harmattan and Etesian winds, where enhanced moisture flux convergence leads to more precipitation. The associated diabatic heating leads to a reduction of the African easterly jet strength. A similar Sahelian response has been previously documented using a different atmospheric model, increasing confidence in the robustness of the result. Finally, the results are discussed in the context of the seasonal predictability of European and African climate.


Monthly Weather Review | 2010

Diagnosing the Origin of Extended-Range Forecast Errors

Thomas Jung; Martin Miller; T. N. Palmer

Abstract Experiments with the ECMWF model are carried out to study the influence that a correct representation of the lower boundary conditions, the tropical atmosphere, and the Northern Hemisphere stratosphere would have on extended-range forecast skill of the extratropical Northern Hemisphere troposphere during boreal winter. Generation of forecast errors during the course of the integration is artificially reduced by relaxing the ECMWF model toward the 40-yr ECMWF Re-Analysis (ERA-40) in certain regions. Prescribing rather than persisting sea surface temperature and sea ice fields leads to a modest forecast error reduction in the extended range, especially over the North Pacific and North America; no beneficial influence is found in the medium range. Relaxation of the tropical troposphere leads to reduced extended-range forecast errors especially over the North Pacific, North America, and the North Atlantic. It is shown that a better representation of the Madden–Julian oscillation is of secondary impor...


Journal of Hydrometeorology | 2012

Evidence for Enhanced Land–Atmosphere Feedback in a Warming Climate

Paul A. Dirmeyer; Benjamin A. Cash; James L. Kinter; Cristiana Stan; Thomas Jung; Lawrence Marx; Peter Towers; Nils P. Wedi; Jennifer M. Adams; Eric L. Altshuler; Bohua Huang; Emilia K. Jin; Julia V. Manganello

AbstractGlobal simulations have been conducted with the European Centre for Medium-Range Weather Forecasts operational model run at T1279 resolution for multiple decades representing climate from the late twentieth and late twenty-first centuries. Changes in key components of the water cycle are examined, focusing on variations at short time scales. Metrics of coupling and feedbacks between soil moisture and surface fluxes and between surface fluxes and properties of the planetary boundary layer (PBL) are inspected. Features of precipitation and other water cycle trends from coupled climate model consensus projections are well simulated. Extreme 6-hourly rainfall totals become more intense over much of the globe, suggesting an increased risk for flash floods. Seasonal-scale droughts are projected to escalate over much of the subtropics and midlatitudes during summer, while tropical and winter droughts become less likely. These changes are accompanied by an increase in the responsiveness of surface evapotr...

Collaboration


Dive into the Thomas Jung's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. J. Rodwell

European Centre for Medium-Range Weather Forecasts

View shared research outputs
Top Co-Authors

Avatar

Qiang Wang

Alfred Wegener Institute for Polar and Marine Research

View shared research outputs
Top Co-Authors

Avatar

Sergey K. Gulev

Shirshov Institute of Oceanology

View shared research outputs
Top Co-Authors

Avatar

Adrian M. Tompkins

International Centre for Theoretical Physics

View shared research outputs
Top Co-Authors

Avatar

Francisco J. Doblas-Reyes

European Centre for Medium-Range Weather Forecasts

View shared research outputs
Top Co-Authors

Avatar

Sergey Danilov

Alfred Wegener Institute for Polar and Marine Research

View shared research outputs
Top Co-Authors

Avatar

F. Vitart

European Centre for Medium-Range Weather Forecasts

View shared research outputs
Top Co-Authors

Avatar

Martin Leutbecher

European Centre for Medium-Range Weather Forecasts

View shared research outputs
Researchain Logo
Decentralizing Knowledge