Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thomas K. Greathouse is active.

Publication


Featured researches published by Thomas K. Greathouse.


Science | 2016

The atmosphere of Pluto as observed by New Horizons

G. R. Gladstone; S. A. Stern; Kimberly Ennico; Catherine B. Olkin; H.A. Weaver; Leslie A. Young; Michael E. Summers; Darrell F. Strobel; David P. Hinson; Joshua A. Kammer; Alex H. Parker; Andrew Joseph Steffl; Ivan R. Linscott; Joel Wm. Parker; Andrew F. Cheng; David C. Slater; Maarten H. Versteeg; Thomas K. Greathouse; Kurt D. Retherford; H. Throop; Nathaniel J. Cunningham; W. W. Woods; Kelsi N. Singer; C. C. C. Tsang; Eric Schindhelm; Carey Michael Lisse; Michael L. Wong; Yuk L. Yung; Xun Zhu; W. Curdt

New Horizons unveils the Pluto system In July 2015, the New Horizons spacecraft flew through the Pluto system at high speed, humanitys first close look at this enigmatic system on the outskirts of our solar system. In a series of papers, the New Horizons team present their analysis of the encounter data downloaded so far: Moore et al. present the complex surface features and geology of Pluto and its large moon Charon, including evidence of tectonics, glacial flow, and possible cryovolcanoes. Grundy et al. analyzed the colors and chemical compositions of their surfaces, with ices of H2O, CH4, CO, N2, and NH3 and a reddish material which may be tholins. Gladstone et al. investigated the atmosphere of Pluto, which is colder and more compact than expected and hosts numerous extensive layers of haze. Weaver et al. examined the small moons Styx, Nix, Kerberos, and Hydra, which are irregularly shaped, fast-rotating, and have bright surfaces. Bagenal et al. report how Pluto modifies its space environment, including interactions with the solar wind and a lack of dust in the system. Together, these findings massively increase our understanding of the bodies in the outer solar system. They will underpin the analysis of New Horizons data, which will continue for years to come. Science, this issue pp. 1284, 10.1126/science.aad9189, 10.1126/science.aad8866, 10.1126/science.aae0030, & 10.1126/science.aad9045 Pluto’s atmosphere is cold, rarefied, and made mostly of nitrogen and methane, with layers of haze. INTRODUCTION For several decades, telescopic observations have shown that Pluto has a complex and intriguing atmosphere. But too little has been known to allow a complete understanding of its global structure and evolution. Major goals of the New Horizons mission included the characterization of the structure and composition of Pluto’s atmosphere, as well as its escape rate, and to determine whether Charon has a measurable atmosphere. RATIONALE The New Horizons spacecraft included several instruments that observed Pluto’s atmosphere, primarily (i) the Radio Experiment (REX) instrument, which produced near-surface pressure and temperature profiles; (ii) the Alice ultraviolet spectrograph, which gave information on atmospheric composition; and (iii) the Long Range Reconnaissance Imager (LORRI) and Multispectral Visible Imaging Camera (MVIC), which provided images of Pluto’s hazes. Together, these instruments have provided data that allow an understanding of the current state of Pluto’s atmosphere and its evolution. RESULTS The REX radio occultation determined Pluto’s surface pressure and found a strong temperature inversion, both of which are generally consistent with atmospheric profiles retrieved from Earth-based stellar occultation measurements. The REX data showed near-symmetry between the structure at ingress and egress, as expected from sublimation driven dynamics, so horizontal winds are expected to be weak. The shallow near-surface boundary layer observed at ingress may arise directly from sublimation. The Alice solar occultation showed absorption by methane and nitrogen and revealed the presence of the photochemical products acetylene and ethylene. The observed nitrogen opacity at high altitudes was lower than expected, which is consistent with a cold upper atmosphere. Such low temperatures imply an additional, but as yet unidentified, cooling agent. A globally extensive haze extending to high altitudes, and with numerous embedded thin layers, is seen in the New Horizons images. The haze has a bluish color, suggesting a composition of very small particles. The observed scattering properties of the haze are consistent with a tholin-like composition. Buoyancy waves generated by winds flowing over orography can produce vertically propagating compression and rarefaction waves that may be related to the narrow haze layers. Pluto’s cold upper atmosphere means atmospheric escape must occur via slow thermal Jeans’ escape. The inferred escape rate of nitrogen is ~10,000 times slower than predicted, whereas that of methane is about the same as predicted. The low nitrogen loss rate is consistent with an undetected Charon atmosphere but possibly inconsistent with sublimation/erosional features seen on Pluto’s surface, so that past escape rates may have been much larger at times. Capture of escaping methane and photochemical products by Charon, and subsequent surface chemical reactions, may contribute to the reddish color of its north pole. CONCLUSION New Horizons observations have revolutionized our understanding of Pluto’s atmosphere. The observations revealed major surprises, such as the unexpectedly cold upper atmosphere and the globally extensive haze layers. The cold upper atmosphere implies much lower escape rates of volatiles from Pluto than predicted and so has important implications for the volatile recycling and the long-term evolution of Pluto’s atmosphere. MVIC image of haze layers above Pluto’s limb. About 20 haze layers are seen from a phase angle of 147°. The layers typically extend horizontally over hundreds of kilometers but are not exactly horizontal. For example, white arrows on the left indicate a layer ~5 km above the surface, which has descended to the surface at the right. Observations made during the New Horizons flyby provide a detailed snapshot of the current state of Pluto’s atmosphere. Whereas the lower atmosphere (at altitudes of less than 200 kilometers) is consistent with ground-based stellar occultations, the upper atmosphere is much colder and more compact than indicated by pre-encounter models. Molecular nitrogen (N2) dominates the atmosphere (at altitudes of less than 1800 kilometers or so), whereas methane (CH4), acetylene (C2H2), ethylene (C2H4), and ethane (C2H6) are abundant minor species and likely feed the production of an extensive haze that encompasses Pluto. The cold upper atmosphere shuts off the anticipated enhanced-Jeans, hydrodynamic-like escape of Pluto’s atmosphere to space. It is unclear whether the current state of Pluto’s atmosphere is representative of its average state—over seasonal or geologic time scales.


Science | 2010

LRO-LAMP observations of the LCROSS impact plume.

G. Randall Gladstone; Dana M. Hurley; Kurt D. Retherford; Paul D. Feldman; Wayne R. Pryor; Jean-Yves Chaufray; Maarten H. Versteeg; Thomas K. Greathouse; Andrew Joseph Steffl; Henry Blair Throop; Joel Wm. Parker; David E. Kaufmann; Anthony F. Egan; Michael W. Davis; David C. Slater; J. Mukherjee; Paul F. Miles; Amanda R. Hendrix; Anthony Colaprete; S. Alan Stern

Watering the Moon About a year ago, a spent upper stage of an Atlas rocket was deliberately crashed into a crater at the south pole of the Moon, ejecting a plume of debris, dust, and vapor. The goal of this event, the Lunar Crater Observation and Sensing Satellite (LCROSS) experiment, was to search for water and other volatiles in the soil of one of the coldest places on the Moon: the permanently shadowed region within the Cabeus crater. Using ultraviolet, visible, and near-infrared spectroscopy data from accompanying craft, Colaprete et al. (p. 463; see the news story by Kerr; see the cover) found evidence for the presence of water and other volatiles within the ejecta cloud. Schultz et al. (p. 468) monitored the different stages of the impact and the resulting plume. Gladstone et al. (p. 472), using an ultraviolet spectrograph onboard the Lunar Reconnaissance Orbiter (LRO), detected H2, CO, Ca, Hg, and Mg in the impact plume, and Hayne et al. (p. 477) measured the thermal signature of the impact and discovered that it had heated a 30 to 200 square-meter region from ∼40 kelvin to at least 950 kelvin. Paige et al. (p. 479) mapped cryogenic zones predictive of volatile entrapment, and Mitrofanov et al. (p. 483) used LRO instruments to confirm that surface temperatures in the south polar region persist even in sunlight. In all, about 155 kilograms of water vapor was emitted during the impact; meanwhile, the LRO continues to orbit the Moon, sending back a stream of data to help us understand the evolution of its complex surface structures. A controlled spacecraft impact into a crater in the lunar south pole plunged through the lunar soil, revealing water and other volatiles. On 9 October 2009, the Lunar Crater Observation and Sensing Satellite (LCROSS) sent a kinetic impactor to strike Cabeus crater, on a mission to search for water ice and other volatiles expected to be trapped in lunar polar soils. The Lyman Alpha Mapping Project (LAMP) ultraviolet spectrograph onboard the Lunar Reconnaissance Orbiter (LRO) observed the plume generated by the LCROSS impact as far-ultraviolet emissions from the fluorescence of sunlight by molecular hydrogen and carbon monoxide, plus resonantly scattered sunlight from atomic mercury, with contributions from calcium and magnesium. The observed light curve is well simulated by the expansion of a vapor cloud at a temperature of ~1000 kelvin, containing ~570 kilograms (kg) of carbon monoxide, ~140 kg of molecular hydrogen, ~160 kg of calcium, ~120 kg of mercury, and ~40 kg of magnesium.


Science | 2017

Jupiter’s interior and deep atmosphere: The initial pole-to-pole passes with the Juno spacecraft

S. J. Bolton; A. Adriani; Virgil Adumitroaie; Michael E. D. Allison; J. D. Anderson; Sushil K. Atreya; Jeremy Bloxham; Shannon T. Brown; J. E. P. Connerney; E. DeJong; William M. Folkner; Daniel Gautier; D. Grassi; S. Gulkis; Tristan Guillot; Candice J. Hansen; William B. Hubbard; L. Iess; A. P. Ingersoll; Michael A. Janssen; John Leif Jørgensen; Yohai Kaspi; Steven M. Levin; Chao Li; Jonathan I. Lunine; Y. Miguel; A. Mura; G. S. Orton; Tobias Owen; Michael A. Ravine

Juno swoops around giant Jupiter Jupiter is the largest and most massive planet in our solar system. NASAs Juno spacecraft arrived at Jupiter on 4 July 2016 and made its first close pass on 27 August 2016. Bolton et al. present results from Junos flight just above the cloud tops, including images of weather in the polar regions and measurements of the magnetic and gravitational fields. Juno also used microwaves to peer below the visible surface, spotting gas welling up from the deep interior. Connerney et al. measured Jupiters aurorae and plasma environment, both as Juno approached the planet and during its first close orbit. Science, this issue p. 821, p. 826 Juno’s first close pass over Jupiter provides answers and fresh questions about the giant planet. On 27 August 2016, the Juno spacecraft acquired science observations of Jupiter, passing less than 5000 kilometers above the equatorial cloud tops. Images of Jupiter’s poles show a chaotic scene, unlike Saturn’s poles. Microwave sounding reveals weather features at pressures deeper than 100 bars, dominated by an ammonia-rich, narrow low-latitude plume resembling a deeper, wider version of Earth’s Hadley cell. Near-infrared mapping reveals the relative humidity within prominent downwelling regions. Juno’s measured gravity field differs substantially from the last available estimate and is one order of magnitude more precise. This has implications for the distribution of heavy elements in the interior, including the existence and mass of Jupiter’s core. The observed magnetic field exhibits smaller spatial variations than expected, indicative of a rich harmonic content.


The Astrophysical Journal | 2005

Measurements of CH3D and CH4 in titan from infrared spectroscopy

Paulo Fernando Penteado; Caitlin Ann Griffith; Thomas K. Greathouse; C. de Bergh

We measured the CH4 column abundance in Titans atmosphere through an analysis of Titans monodeuterated methane (CH3D) spectral features. CH3D is several orders of magnitude less abundant in Titans atmosphere than CH4. Thus, unlike CH4, the strong and well-studied CH3D 3ν2 lines are not saturated and provide a sensitive measure of its column abundance. We recorded the CH3D 3ν2 lines at 1.55 μm at NASAs Infrared Telescope Facility (IRTF) equipped with the Cryogenic Echelle Spectrograph. We derive a total integrated column abundance of 2.1 ± 0.1 m amagat for CH3D. We also measured stratospheric emission lines of both CH3D and CH4 at 8.6 μm at higher resolution than previously possible to better constrain the CH3D/CH4 ratio. These observations, recorded at the IRTF using the Texas Echelon Cross Echelle Spectrograph, were analyzed with radiative transfer calculations. We determine a CH3D/CH4 ratio of (50 ± 10) × 10-5. Taken together, our measurements of the CH3D column abundance and the CH3D/CH4 ratio indicate a total CH4 column abundance of 4.2 km amagat, close to the column abundance of an atmosphere with 100% saturation in the entire troposphere.


The Astrophysical Journal | 2003

Propane on Titan

Henry G. Roe; Thomas K. Greathouse; Matthew J. Richter; J. H. Lacy

We present the first observations of propane (C_3H_8) on Titan that unambiguously resolve propane features from other numerous stratospheric emissions. This is accomplished using a R = λ/δλ ≈ 10^5 spectrometer (the Texas Echelon Cross Echelle Spectrograph) to observe propanes ν_(26) rotation-vibration band near 748 cm^(-1). We find a best-fit fractional abundance of propane in Titans stratosphere of (6.2 ± 1.2) × 10^(-7) in the altitude range to which we are sensitive (90-250 km or 13-0.24 mbar).


The Astrophysical Journal | 2006

Water Vapor on Betelgeuse as Revealed by TEXES High-Resolution 12 μm Spectra

Nils Ryde; Graham M. Harper; Matthew J. Richter; Thomas K. Greathouse; John H. Lacy

The outer atmosphere of the M supergiant Betelgeuse is puzzling. Published observations of different kinds have shed light on different aspects of the atmosphere, but no unified picture has emerged. They have shown, for example, evidence of a water envelope (MOLsphere) that in some studies is found to be optically thick in the mid-infrared. In this paper, we present high-resolution, mid-infrared spectra of Betelgeuse recorded with the TEXES spectrograph. The spectra clearly show absorption features of water vapor and OH. We show that a spectrum based on a spherical, hydrostatic model photosphere with Teff = 3600 K, an effective temperature often assumed for Betelgeuse, fails to model the observed lines. Furthermore, we show that published MOLsphere scenarios are unable to explain our data. However, we are able to model the observed spectrum reasonably well by adopting a cooler outer photospheric structure corresponding to Tmod = 3250 K. The success of this model may indicate that the observed mid-infrared lines are formed in cool photospheric surface regions. Given the uncertainties of the temperature structure and the likely presence of inhomogeneities, we cannot rule out the possibility that our spectrum could be mostly photospheric, albeit nonclassical. Our data put new, strong constraints on atmospheric models of Betelgeuse, and we conclude that continued investigation requires consideration of nonclassical model photospheres, as well as possible effects of a MOLsphere. We show that the mid-infrared water vapor features have great diagnostic value for the environments of K and M (super)giant star atmospheres.


Astronomy and Astrophysics | 2012

HDO and SO2 thermal mapping on Venus: evidence for strong SO2 variability

Th. Encrenaz; Thomas K. Greathouse; Henry G. Roe; Matthew J. Richter; J. H. Lacy; B. Bézard; T. Fouchet; Thomas Widemann

We have been using the TEXES high-resolution imaging spectrometer at the NASA Infrared Telescope Facility to map sulfur dioxide and deuterated water over the disk of Venus. Observations took place on January 10–12, 2012. The diameter of Venus was 13 arcsec, with an illumination factor of 80%. Data were recorded in the 1344–1370 cm −1 range (around 7.35 μm) with a spectral resolving power of 80 000 and a spatial resolution of about 1.5 arcsec. In this spectral range, the emission of Venus comes from above the cloud top (z = 60–80 km). Four HDO lines and tens of SO2 lines have been identified in our spectra. Mixing ratios have been estimated from HDO/CO2 and SO2/CO2 line depth ratios, using weak neighboring transitions of comparable depths. The HDO maps, recorded on Jan. 10 and Jan. 12, are globally uniform with no significant variation between the two dates. A slight enhancement of the HDO mixing ratio toward the limb might be interpreted as a possible increase of the D/H ratio with height above the cloud level. The mean H2O mixing ratio is found to be 1.5 +/−0.75 ppm, assuming a D/H ratio of 0.0312 (i.e. 200 times the terrestrial value) over the cloud deck. The SO2 maps, recorded each night from Jan. 10 to Jan. 12, show strong variations over the disk of Venus, by a factor as high as 5 to 10. In addition, the position of the maximum SO2 mixing ratio strongly varies on a timescale of 24 h. The maximum SO2 mixing ratio ranges between 75 +/−25 ppb and 125 +/−50 ppb between Jan. 10 and Jan. 12. The high variability of sulfur dioxide is probably a consequence of its very short photochemical lifetime.


Astronomy and Astrophysics | 2002

A stringent upper limit of the H2O2 abundance in the Martian atmosphere

Thérèse Encrenaz; Thomas K. Greathouse; B. Bézard; Sushil K. Atreya; Ah-San Wong; M. J. Richter; J. H. Lacy

Hydrogen peroxide H2O2 has been suggested as a possible oxidizer of the Martian surface. However, this minor species has never been detected. Photochemical models suggest that H2O2 and H2O abundances should be correlated. We have searched for H2O2 in the northern atmosphere of Mars, on Feb. 2-3, 2001 (Ls= 112 deg), at a time corresponding to maximum water vapor abundance in the northern hemisphere. The TEXES high-resolution grating spectrograph was used at the NASA/Infrared Telescope Facility (IRTF). Individual lines of the H2O26 band were searched for in the 1226-1235 cm 1


Astronomy and Astrophysics | 2013

HDO and SO2 thermal mapping on Venus - II. The SO2 spatial distribution above and within the clouds

Th. Encrenaz; Thomas K. Greathouse; M. J. Richter; J. H. Lacy; Thomas Widemann; B. Bézard; T. Fouchet; C. Dewitt; Sushil K. Atreya

Sulfur dioxide and water vapor, two key species of Venus photochemistry, are known to exhibit significant spatial and temporal variations above the cloud top. In particular, ground-based thermal imaging spectroscopy at high spectral resolution, achieved on Venus in January 2012, has shown evidence for strong SO2 variations on timescales shorter than a day. We have continued our observing campaign using the TEXES high-resolution imaging spectrometer at the NASA InfraRed Telescope Facility to map sulfur dioxide over the disk of Venus at two different wavelengths, 7 μm (already used in the previous study) and 19 μm. The 7 μm radiation probes the top of the H2SO4 cloud, while the 19 μm radiation probes a few kilometers below within the cloud. Observations took place on October 4 and 5, 2012. Both HDO and SO2 lines are identified in our 7-μm spectra and SO2 is also easily identified at 19 μm. The CO2 lines at 7 and 19 μm are used to infer the thermal structure. An isothermal/inversion layer is present at high latitudes (above 60 N and S) in the polar collars, which was not detected in October 2012. The enhancement of the polar collar in October 2012 is probably due to the fact that the morning terminator is observed, while the January data probed the evening terminator. As observed in our previous run, the HDO map is relatively uniform over the disk of Venus, with a mean mixing ratio of about 1 ppm. In contrast, the SO2 maps at 19 μm show intensity variations by a factor of about 2 over the disk within the cloud, less patchy than observed at the cloud top at 7 μm. In addition, the SO2 maps seem to indicate significant temporal changes within an hour. There is evidence for ac utoff in the SO2 vertical distribution above the cloud top, also previously observed by SPICAV/SOIR aboard Venus Express and predicted by photochemical models.


Astronomy and Astrophysics | 2011

A stringent upper limit to SO2 in the Martian atmosphere

Thérèse Encrenaz; Thomas K. Greathouse; M. J. Richter; J. H. Lacy; T. Fouchet; B. Bézard; Franck Lefèvre; F. Forget; Sushil K. Atreya

Surfur-bearing molecules have been found at the surface of Mars by the Viking lander, the Spirit and Opportunity rovers, and the OMEGA infrared spectrometer aboard Mars Express. However, no gaseous sulfur-bearing species have ever been detected in the Martian atmosphere. We search for SO2 signatures in the thermal spectrum of Mars at 7.4 μm using the Texas Echelon Cross Echelle Spectrograph (TEXES) at the NASA Infrared Telescope Facility (IRTF). Data were obtained on Oct. 12, 2009 (Ls = 353 ◦ ), in the 1350–1360 cm −1 range, with a spatial resolution of 1 arcsec (after convolution over three pixels along the N-S axis and two steps along the E-W axis) and a resolving power of 80 000. To improve the signal-to-noise ratio (S/N), we co-added the Martian spectrum around the positions of nine selected SO2 transitions with a high S/N and no telluric contamination. From a mean spectrum, averaged over 35 pixels in the region of maximum continuum, we infer a 2σ upper limit of 0.3 ppb to the SO2 mixing ratio, assuming that our instrumental errors are combined according to Gaussian statistics. Our upper limit is three times lower than the upper limit derived by Krasnopolsky (2005, Icarus, 178, 487), who used the same technique on previous TEXES data. In addition, we derive an upper limit of 2 ppb at each spatial pixel of the region observed by TEXES, which covers the longitude ranges 50 E–170 E for latitudes above 30 N, 100 E–170 E for latitudes between 0 and 30 N, and 110 E–170 E for latitudes between 15 S and 0. The non-detection of localized SO2 sources in the observed area is consistent with a homogeneous distribution being expected around equinox for noncondensible species with a lifetime longer than the global mixing time. In view of the typically large SO2/CH4 ratio observed in terrestrial volcanoes, and assuming a comparable volcanic composition for Mars and the Earth, our result reaffirms that a volcanic origin is unlikely for any methane in the Martian atmosphere.

Collaboration


Dive into the Thomas K. Greathouse's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael W. Davis

Southwest Research Institute

View shared research outputs
Top Co-Authors

Avatar

Maarten H. Versteeg

Southwest Research Institute

View shared research outputs
Top Co-Authors

Avatar

Kurt D. Retherford

Southwest Research Institute

View shared research outputs
Top Co-Authors

Avatar

John H. Lacy

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

G. Randall Gladstone

Southwest Research Institute

View shared research outputs
Top Co-Authors

Avatar

Vincent Hue

Southwest Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. H. Lacy

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Daniel T. Jaffe

University of Texas at Austin

View shared research outputs
Researchain Logo
Decentralizing Knowledge