Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thomas L. Babb is active.

Publication


Featured researches published by Thomas L. Babb.


Epilepsia | 1993

Circuit Mechanisms of Seizures in the Pilocarpine Model of Chronic Epilepsy: Cell Loss and Mossy Fiber Sprouting

Luiz E.A.M. Mello; Esper A. Cavalheiro; Aiko M. Tan; William R. Kupfer; James K. Pretorius; Thomas L. Babb; David M. Finch

We used the pilocarpine model of chronic spontaneous recurrent seizures to evaluate the time course of supragranular dentate sprouting and to assess the relation between several changes that occur in epilep tic tissue with different behavioral manifestations of this experimental model of temporal lobe epilepsy. Pilo carpine‐induced status epilepticus (SE) invariably led to cell loss in the hilus of the dentate gyrus (DG) and to spontaneous recurrent seizures. Cell loss was often also noted in the DG and in hippocampal subfields CA1 and CA3. The seizures began to appear at a mean of 15 days after SE induction (silent period), recurred at variable frequencies for each animal, and lasted for as long as the animals were allowed to survive (325 days). The granule cell layer of the DG was dispersed in epileptic animals, and neo‐Timm stains showed supra‐and intragranular mossy fiber sprouting. Supragranular mossy fiber sprout ing and dentate granule cell dispersion began to appear early after SE (as early as 4 and 9 days, respectively) and reached a plateau by 100 days. Animals with a greater degree of cell loss in hippocampal field CAS showed later onset of chronic epilepsy (r= 0.83, p < 0.0005), suggest ing that CA3 represents one of the routes for seizure spread. These results demonstrate that the pilocarpine model of chronic seizures replicates several of the fea tures of human temporal lobe epilepsy (hippocampal cell loss, suprar and intragranular mossy fiber sprouting, den tate granule cell dispersion, spontaneous recurrent sei zures) and that it may be a useful model for studying this human condition. The results also suggest that even though a certain amount of cell loss in specific areas may be essential for chronic seizures to occur, excessive cell loss may hinder epileptogenesis.


Neuroscience | 1991

Synaptic reorganization by mossy fibers in human epileptic fascia dentata.

Thomas L. Babb; William R. Kupfer; James K. Pretorius; Paul H. Crandall; Michel F. Levesque

This study was designed to identify whether synaptic reorganizations occur in epileptic human hippocampus which might contribute to feedback excitation. In epileptic hippocampi, (n = 21) reactive synaptogenesis of mossy fibers into the inner molecular layer of the granule cell dendrites was demonstrated at the light microscopic and electron microscopic levels. There was no inner molecular layer staining for mossy fibers in autopsy controls (n = 4) or in controls with neocortex epilepsy having no hippocampal sclerosis (n = 2). Comparing epileptics to controls, there were statistically significant correlations between Timm stain density and hilar cell loss. Since hilar neurons are the origin of ipsilateral projections to the inner molecular layer, this suggests that hilar deafferentation of this dendritic zone precedes mossy fiber reafferentation. Quantitative Timm-stained electron microscopy revealed large, zinc-labelled vesicles in terminals with asymmetric synapses on dendrites in the inner molecular and granule cell layers. Terminals in the middle and outer molecular layers did not contain zinc, were smaller and had smaller vesicles. These histochemical and ultrastructural data suggest that in damaged human epileptic hippocampus, mossy fiber reactive synaptogenesis may result in monosynaptic recurrent excitation of granule cells that could contribute to focal seizure onsets.


Epilepsia | 1984

Temporal lobe volumetric cell densities in temporal lobe epilepsy.

Thomas L. Babb; W. Jann Brown; James K. Pretorius; Cynthia J. Davenport; Jeffrey P. Lieb; Paul H. Crandall

Summary: Volumetric cell densities in 13 different sub‐fields of the temporal lobe were calculated to test various hypotheses about mesial and lateral temporal lobe sclerosis in patients with complex partial epilepsy. In patients benefitting (primary group) from anterior temporal lobectomy (ATL), sclerosis was greater (fewer cells) in anterior than in posterior hippocampus. By contrast, the patients lacking full benefit (nonprimary group) from ATL had decreased numbers of neurons equally distributed from anterior to posterior hippocampus, indicating that zones of mesial temporal cell loss are linked to zones of epilep‐togenicity. These data support a model of focal hippo‐campal epilepsy originating from zones of cell loss and synaptic reorganization that is epileptic. There were no differences in cell densities in gyrus hippocampi or in lateral temporal gyri when patients with temporal lobe epilepsy and controls were compared. Hippocampal cell densities in mesial temporal lobe were not reduced in psychomotor epileptic patients with extrahippocampal foci consisting of foreign tissue. Variables in seizure histories were not correlated with Ammons horn cell densities, indicating that most of the sclerosis preceded the seizures, which did virtually no significant further damage to hippocampus with repeated partial or generalized seizures.


Epilepsia | 1984

Distribution of Pyramidal Cell Density and Hyperexcitability in the Epileptic Human Hippocampal Formation

Thomas L. Babb; Jeffrey P. Lieb; W. Jann Brown; James K. Pretorius; Paul H. Crandall

Summary: Pyramidal cell densities in various regions of the anterior and posterior hippocampal formation were measured from en bloc temporal lobe resections and compared with presurgical stereoelectroencephalography (SEEG) data derived from depth electrodes in 12 patients with temporal lobe epilepsy. These data were compared with cell densities observed in four nonepileptic control patients. Patients who consistently exhibited anterior focal changes in the SEEG accompanying onset of ictus had cell densities that were selectively reduced in the anterior hippocampal formation but normal with respect to controls in the posterior hippocampal formation. Patients who exhibited more regional changes in the SEEG at onset of ictus had reduced cell densities in both the anterior and posterior hippocampal formation. Patients who exhibited focal spike activity in the anterior hippocampal formation as their predominant interictal SEEG pattern also had selectively reduced cell densities in the anterior hippocampal formation, while patients with widespread spiking throughout the hippocampal formation had reduced cell densities both anteriorly and posteriorly. These data support the concept that epileptogen‐esis occurs in or near those areas of epileptic hippocampus that are most damaged. Hippocampal sclerosis must be viewed as related to adjacent hyperexcitable or epileptogenic neurons and not solely as a passive result of repeated anoxia or ischemia.


Epilepsy Research | 1996

The pathogenic and progressive features of chronic human hippocampal epilepsy

Gary W. Mathern; Thomas L. Babb; João Pereira Leite; James K. Pretorius; Kristin M. Yeoman; Paula A. Kuhlman

To design useful experimental models of epilepsy, it is necessary to clearly understand the known clinical-pathologic features of the disease process. Studies of mesial temporal lobe epilepsy (MTLE) patients have identified several distinctive clinical and pathophysiologic characteristics and many of these can be analyzed in experimental models. For example, patients with typical MTLE have medical histories that often contain an initial precipitating injury (IPI), are likely to have hippocampal sclerosis in the surgical specimen, and have better seizure outcomes than patients with typical idiopathic temporal seizures (i.e. cryptogenic). Hippocampal from children as young as age 1 year with IPI histories also demonstrate neuron damage similar to adults with hippocampal sclerosis. Compared to IPI patients without seizures (i.e. trauma, hypoxia, etc.), IPI cases with severe seizures showed younger ages at the IPI, shorter latent periods, and longer durations of habitual MTLE. Hippocampal damage is often bilateral, however, the epileptogenic side shows hippocampal sclerosis and the opposite side usually shows only mild neuron losses. Moreover, MTLE patients show declines in hippocampal neuron densities with very long histories of habitual seizures (15 to 20 years), however, the additional neuron loss adds to the template of hippocampal sclerosis and occurs in limited subfields (granule cells, CA1 and prosubiculum). Hippocampal axon and synaptic reorganization is another pathologic feature of MTLE, and involves granule cell mossy fibers and axons immunoreactive for neuropeptide upsilon, somatostatin, and glutamate decarboxylase (which synthesizes GABA). Finally, MTLE patients with hippocampal sclerosis show increased granule cell mRNA levels for brain derived neurotropic factor, nerve growth factor, and neurotrophin-3 that correlate with mossy fiber sprouting or with declines in Ammons horn neuron densities. Taken together, our data support the following concepts: (1) The pathogenesis of MTLE is associated with IPI histories that probably injure the hippocampus at some time prior to habitual seizure onsets, (2) most of the damage seems to occur with the IPI, (3) there can be additional neuron loss associated with long histories, (4) another pathologic feature of MTLE is axon reorganization of surviving fascia dentata and hippocampal neurons, and (5) reorganized axon circuits probably contribute to seizure or propagation.


Experimental Neurology | 1990

Sprouting of GABAergic and mossy fiber axons in dentate gyrus following intrahippocampal kainate in the rat

Cynthia J. Davenport; W. Jann Brown; Thomas L. Babb

The present study examined the bilateral synaptic rearrangements of presumed gamma-aminobutyric acid (GABAergic) inhibitory axons and mossy fiber (presumed excitatory) recurrent collaterals following intrahippocampal kainic acid (KA) injection. Glutamate decarboxylase immunoreactivity (GAD-IR) was used to study inhibitory axon terminal sprouting, following 0.5 microgram KA/0.2 microliter injected unilaterally into the posterior hippocampus of rats (n = 16), with survival periods of 14, 28, and 120 days. The age-matched control animals (n = 9) received intrahippocampal 0.2 microliter saline (sham, n = 4) or no injection (normal, n = 5). To study mossy fiber synaptic rearrangements, 0.5 microgram KA/0.2 microliter volumes were injected unilaterally into the posterior hippocampus of rats (n = 10), with survival periods from 14, 28, and 120 days, and Timm sulfide-stained tissue sections were compared to age-matched sham (n = 4) or normal controls (n = 4). At 14 through 120 days after posterior KA injection, GAD-IR puncta were significantly increased in the ipsi- and contralateral inner molecular layers (IML) of the fascia dentata (FD) when compared to sham or normal controls. KA lesion also induced mossy fiber recurrent collateral sprouting into the ipsi- and contralateral FD IMLs. The loss of both the commissural and ipsilateral associational afferents to the FD apparently induced sprouting into their ipsi- and contralateral termination zones by granule cell mossy fibers and GAD-IR axons, thus establishing an abnormal circuitry near the observed pathology in the kainate model of epilepsy. Although reactive synaptogenesis of mossy fibers producing monosynaptic excitation may be one mechanism for KA epileptogenicity, the concurrent sprouting of GABAergic terminals in the same IML zone of the FD suggests that anomalous inhibitory synapses may contribute to chronic KA hippocampal hyperexcitability.


Neurology | 2001

Temporal lobe epilepsy due to hippocampal sclerosis in pediatric candidates for epilepsy surgery

Armin Mohamed; Elaine Wyllie; Paul Ruggieri; Prakash Kotagal; Thomas L. Babb; A. Hilbig; Christi Wylie; Zhong Ying; S. Staugaitis; Imad Najm; Juan Bulacio; Nancy Foldvary; Hans O. Lüders; William Bingaman

Objective: To characterize the clinical, EEG, MRI, and histopathologic features and explore seizure outcome in pediatric candidates for epilepsy surgery who have temporal lobe epilepsy (TLE) caused by hippocampal sclerosis (HS). Methods: The authors studied 17 children (4 to 12 years of age) and 17 adolescents (13 to 20 years of age) who had anteromesial temporal resection between 1990 and 1998. Results: All patients had seizures characterized by decreased awareness and responsiveness. Automatisms were typically mild to moderate in children and moderate to marked in adolescents. Among adolescents, interictal spikes were almost exclusively unilateral anterior temporal, as opposed to children in whom anterior temporal spikes were associated with mid/posterior temporal, bilateral temporal, extratemporal, or generalized spikes in 60% of cases. MRI showed hippocampal sclerosis on the side of EEG seizure onset in all patients. Fifty-four percent of children and 56% of adolescents had significant asymmetry of total hippocampal volumes, whereas the remaining patients had only focal atrophy of the hippocampal head or body. Subtle MRI abnormalities of ipsilateral temporal neocortex were seen in all children and 60% of adolescents studied with FLAIR images. On histopathology, there was an unexpectedly high frequency of dual pathology with mild to moderate cortical dysplasia as well as HS, seen in 79% of children and adolescents. Seventy-eight percent of patients were free of seizures at follow-up (mean, 2.6 years). A tendency for lower seizure-free outcome was observed in patients with bilateral temporal interictal sharp waves or bilateral HS on MRI. The presence of dual pathology did not portend poor postsurgical outcome. Conclusions: TLE caused by HS similar to those in adults were seen in children as young as 4 years of age. Focal hippocampal atrophy seen on MRI often was not reflected in total hippocampal volumetry. Children may have an especially high frequency of dual pathology, with mild to moderate cortical dysplasia as well as HS, and MRI usually, but not always, predicts this finding. Postsurgical seizure outcome is similar to that in adult series.


Electroencephalography and Clinical Neurophysiology | 1993

Hippocampal EEG excitability and chronic spontaneous seizures are associated with aberrant synaptic reorganization in the rat intrahippocampal kainate model

Gary W. Mathern; Fredi Cifuentes; João Pereira Leite; James K. Pretorius; Thomas L. Babb

Previously, Mathern et al. (1992) demonstrated progressive mossy fiber (MF) sprouting in the intrahippocampal rat kainate seizure model. This study looked at the time course of EEG hyperexcitability and spontaneous seizure activity in the same in vivo model to determine if seizures were associated with MF sprouting. Results showed that animals progressed through 4 distinct EEG and behavioral phases and that in the chronic phase (greater than 90 days post kainate) MF sprouting was strongly associated with hippocampal epileptogenesis. Progressive MF sprouting into the inner molecular layer (IML) of the fascia dentata paralleled the EEG and behavioral appearance of independent hippocampal interictal epileptiform transients and chronic seizures. Hippocampi from chronic animals that demonstrated unilateral MF IML sprouting were observed to have interictal epileptiform transients and spontaneous seizures that lateralized to the hippocampus with synaptically reorganized MFs. Chronic animals with bilateral MF sprouting were observed to have bilateral independent EEG and behavioral hyperexcitability. Control animals and kainate treated animals that lacked hippocampal cell loss and MF sprouting did not show signs of chronic hippocampal EEG hyperexcitability or chronic seizures. These data support the idea that MF sprouting contributes to chronic hippocampal seizures by feedback excitation which leads to the excitability and synchronization required for a damaged hippocampus to become an epileptic focus.


Neuroscience | 1997

In contrast to kindled seizures, the frequency of spontaneous epilepsy in the limbic status model correlates with greater aberrant fascia dentata excitatory and inhibitory axon sprouting, and increased staining for N-methyl-d-aspartate, AMPA and GABAA receptors

Gary W. Mathern; Edward H. Bertram; Thomas L. Babb; James K. Pretorius; Paula A. Kuhlman; S Spradlin; Delia Mendoza

This study determined whether there were differences in hippocampal neuron loss and synaptic plasticity by comparing rats with spontaneous epilepsy after limbic status epilepticus and animals with a similar frequency of kindled seizures. At the University of Virginia, Sprague-Dawley rats were implanted with bilateral ventral hippocampal electrodes and treated as follows; no stimulation (electrode controls; n=5): hippocampal stimulation without status (stimulation controls; n=5); and limbic status from continuous hippocampal stimulation (n=12). The limbic status group were electrographically monitored for a minimum of four weeks. Four rats had no recorded chronic seizures (status controls), and all three control groups showed no differences in hippocampal pathology and were therefore incorporated into a single group (controls). Eight limbic status animals eventually developed chronic epilepsy (spontaneous seizures) and an additional eight rats were kindled to a similar number and frequency of stage 5 seizures (kindled) as the spontaneous seizures group. At the University of California (UCLA) the hippocampi were processed for: (i) Niss1 stain for densitometric neuron counts; (ii) neo-Timms histochemistry for mossy fiber sprouting; and (iii) immunocytochemical staining for glutamate decarboxylase, N-methyl-D-aspartate receptor subunit 2, AMPA receptor subunit 1 and the GABA(A) receptor. In the fascia dentata inner and outer molecular layers the neo-Timms stain and immunoreactivity was quantified as gray values using computer image analysis techniques. Statistically significant results (P<0.05) showed the following. Compared to controls and kindled animals, rats with spontaneous seizures had: (i) lower neuron counts for the fascia dentata hilus, CA3 and CA1 stratum pyramidale; (ii) greater supragranular inner molecular layer mossy fiber staining; and (iii) greater glutamate decarboxylase immunoreactivity in both molecular layers. Greater supragranular excitatory mossy fiber and GABAergic axon sprouting correlated with: (i) increases in N-methyl-D-aspartate receptor subunit 2 inner molecular layer staining; (ii) more AMPA receptor subunit 1 immunoreactivity in both molecular layers; and (iii) greater outer than inner molecular layer GABA(A) immunoreactivity. Furthermore, in contrast to kindled animals, rats with spontaneous seizures showed that increasing seizure frequency per week and the total number of natural seizures positively correlated with greater Timms and GABAergic axon sprouting, and with increases in N-methyl-D-aspartate receptor subunit 2 and AMPA receptor subunit 1 receptor staining. In this rat limbic status model these findings indicate that chronic seizures are associated with hippocampal neuron loss, reactive axon sprouting and increases in excitatory receptor plasticity that differ from rats with an equal frequency of kindled seizures and controls. The hippocampal pathological findings in the limbic status model are similar to those in humans with hippocampal sclerosis and mesial temporal lobe epilepsy, and support the hypothesis that synaptic reorganization of both excitatory and inhibitory systems in the fascia dentata is an important pathophysiological mechanism that probably contributes to or generates chronic limbic seizures.


Experimental Brain Research | 1990

Functional connections in the human temporal lobe

Charles L. Wilson; Masako Isokawa; Thomas L. Babb; Paul H. Crandall

SummaryConnections in the human mesial temporal lobe were investigated using brief, single pulses of electrical stimulation to evoke field potential responses in limbic structures of 74 epileptic patients. Eight specific areas within these structures were stereotactically targeted for study, including amygdala, entorhinal cortex, presubiculum, the anterior, middle and posterior levels of hippocampus and the middle and posterior levels of parahippocampal gyrus. These sites were studied systematically in order to quantitatively assess the response characteristics and reliability of responses evoked during stimulation of pathways connecting the areas. Specific measures included response probability, amplitude, latency and conduction velocities. The results are assumed to be representative of typical human limbic pathways since all recordings were made interictally and response probabilities across sites were not found to differ significantly between non-epileptogenic vs. identified epileptogenic regions. Field potentials ranging in amplitude from less than 0.1 to greater than 6.0 mV were evoked ipsilaterally, with mean onset latencies and conduction velocities ranging from 4.4 ms and 3.64 m/s in the perforant pathway connecting entorhinal cortex to anterior hippocampus to 24.8 ms and 0.88 m/s in the pathway connecting the amygdala and middle hippocampus. Stimulation of presubiculum and entorhinal cortex were most effective in evoking widespread responses in adjacent limbic recording sites, whereas posterior parahippocampal gyrus appeared functionally separated from other limbic sites since its probability of influencing ipsilateral sites was significantly lower than any other area. It was particularly noteworthy that stimulation did not evoke responses in any sites in contralateral hippocampal formation; even though a large number of sites were tested with bilateral implantation of homotopic electrodes. The absence of evidence for a functional contralateral limbic projection in the human brain stands in marked contrast to the anatomical and physiological evidence in lower animals for strong contralateral connections between subfields of the hippocampus via the hippocampal commissure. In addition, it correlates well with anatomical evidence for reduced hippocampal commissural connections in lower primates.

Collaboration


Dive into the Thomas L. Babb's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David M. Finch

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jerome Engel

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge