Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thomas L. Olson is active.

Publication


Featured researches published by Thomas L. Olson.


The New England Journal of Medicine | 2012

Somatic STAT3 mutations in large granular lymphocytic leukemia.

Hanna L M Koskela; Samuli Eldfors; Pekka Ellonen; Arjan J. van Adrichem; Heikki Kuusanmäki; Emma I. Andersson; Sonja Lagström; Michael J. Clemente; Thomas L. Olson; Sari E. Jalkanen; Muntasir Mamun Majumder; Henrikki Almusa; Henrik Edgren; Maija Lepistö; Pirkko Mattila; Kathryn M Guinta; Pirjo Koistinen; Taru Kuittinen; Kati Penttinen; Alun Parsons; Jonathan Knowles; Janna Saarela; Krister Wennerberg; Olli Kallioniemi; Kimmo Porkka; Thomas P. Loughran; Caroline Heckman; Jaroslaw P. Maciejewski; Satu Mustjoki

BACKGROUND T-cell large granular lymphocytic leukemia is a rare lymphoproliferative disorder characterized by the expansion of clonal CD3+CD8+ cytotoxic T lymphocytes (CTLs) and often associated with autoimmune disorders and immune-mediated cytopenias. METHODS We used next-generation exome sequencing to identify somatic mutations in CTLs from an index patient with large granular lymphocytic leukemia. Targeted resequencing was performed in a well-characterized cohort of 76 patients with this disorder, characterized by clonal T-cell-receptor rearrangements and increased numbers of large granular lymphocytes. RESULTS Mutations in the signal transducer and activator of transcription 3 gene (STAT3) were found in 31 of 77 patients (40%) with large granular lymphocytic leukemia. Among these 31 patients, recurrent mutational hot spots included Y640F in 13 (17%), D661V in 7 (9%), D661Y in 7 (9%), and N647I in 3 (4%). All mutations were located in exon 21, encoding the Src homology 2 (SH2) domain, which mediates the dimerization and activation of STAT protein. The amino acid changes resulted in a more hydrophobic protein surface and were associated with phosphorylation of STAT3 and its localization in the nucleus. In vitro functional studies showed that the Y640F and D661V mutations increased the transcriptional activity of STAT3. In the affected patients, downstream target genes of the STAT3 pathway (IFNGR2, BCL2L1, and JAK2) were up-regulated. Patients with STAT3 mutations presented more often with neutropenia and rheumatoid arthritis than did patients without these mutations. CONCLUSIONS The SH2 dimerization and activation domain of STAT3 is frequently mutated in patients with large granular lymphocytic leukemia; these findings suggest that aberrant STAT3 signaling underlies the pathogenesis of this disease. (Funded by the Academy of Finland and others.).


Blood | 2012

STAT3 mutations unify the pathogenesis of chronic lymphoproliferative disorders of NK cells and T-cell large granular lymphocyte leukemia

Andres Jerez; Michael J. Clemente; Hideki Makishima; Hanna L M Koskela; Francis LeBlanc; Kwok Peng Ng; Thomas L. Olson; Bartlomiej Przychodzen; Manuel Afable; Inés Gómez-Seguí; Kathryn M Guinta; Lisa Durkin; Eric D. Hsi; Kathy L. McGraw; Dan Zhang; Marcin W. Wlodarski; Kimmo Porkka; Mikkael A. Sekeres; Alan F. List; Satu Mustjoki; Thomas P. Loughran; Jaroslaw P. Maciejewski

Chronic lymphoproliferative disorders of natural killer cells (CLPD-NKs) and T-cell large granular lymphocytic leukemias (T-LGLs) are clonal lymphoproliferations arising from either natural killer cells or cytotoxic T lymphocytes (CTLs). We have investigated for distribution and functional significance of mutations in 50 CLPD-NKs and 120 T-LGL patients by direct sequencing, allele-specific PCR, and microarray analysis. STAT3 gene mutations are present in both T and NK diseases: approximately one-third of patients with each type of disorder convey these mutations. Mutations were found in exons 21 and 20, encoding the Src homology 2 domain. Patients with mutations are characterized by symptomatic disease (75%), history of multiple treatments, and a specific pattern of STAT3 activation and gene deregulation, including increased expression of genes activated by STAT3. Many of these features are also found in patients with wild-type STAT3, indicating that other mechanisms of STAT3 activation can be operative in these chronic lymphoproliferative disorders. Treatment with STAT3 inhibitors, both in wild-type and mutant cases, resulted in accelerated apoptosis. STAT3 mutations are frequent in large granular lymphocytes suggesting a similar molecular dysregulation in malignant chronic expansions of NK and CTL origin. STAT3 mutations may distinguish truly malignant lymphoproliferations involving T and NK cells from reactive expansions.


Blood | 2013

Discovery of somatic STAT5b mutations in large granular lymphocytic leukemia

Hanna Rajala; Samuli Eldfors; Heikki Kuusanmäki; Arjan J. van Adrichem; Thomas L. Olson; Sonja Lagström; Emma I. Andersson; Andres Jerez; Michael J. Clemente; Yiyi Yan; Dan Zhang; Andy Awwad; Pekka Ellonen; Olli Kallioniemi; Krister Wennerberg; Kimmo Porkka; Jaroslaw P. Maciejewski; Thomas P. Loughran; Caroline Heckman; Satu Mustjoki

Large granular lymphocytic (LGL) leukemia is characterized by clonal expansion of cytotoxic T cells or natural killer cells. Recently, somatic mutations in the signal transducer and activator of transcription 3 (STAT3) gene were discovered in 28% to 40% of LGL leukemia patients. By exome and transcriptome sequencing of 2 STAT3 mutation-negative LGL leukemia patients, we identified a recurrent, somatic missense mutation (Y665F) in the Src-like homology 2 domain of the STAT5b gene. Targeted amplicon sequencing of 211 LGL leukemia patients revealed 2 additional patients with STAT5b mutations (N642H), resulting in a total frequency of 2% (4 of 211) of STAT5b mutations across all patients. The Y665F and N642H mutant constructs increased the transcriptional activity of STAT5 and tyrosine (Y694) phosphorylation, which was also observed in patient samples. The clinical course of the disease in patients with the N642H mutation was aggressive and fatal, clearly different from typical LGL leukemia with a relatively favorable outcome. This is the first time somatic STAT5 mutations are discovered in human cancer and further emphasizes the role of STAT family genes in the pathogenesis of LGL leukemia.


Blood | 2013

STAT3-mutations indicate the presence of subclinical T cell clones in a subset of aplastic anemia and myelodysplastic syndrome patients

Andres Jerez; Michael J. Clemente; Hideki Makishima; Hanna Rajala; Inés Gómez-Seguí; Thomas L. Olson; Kathy L. McGraw; Bartlomiej Przychodzen; Austin Kulasekararaj; Manuel Afable; Holleh D Husseinzadeh; Naoko Hosono; Francis LeBlanc; Sonja Lagström; Dan Zhang; Pekka Ellonen; André Tichelli; Catherine Nissen; Alan E. Lichtin; Aleksandra Wodnar-Filipowicz; Ghulam J. Mufti; Alan F. List; Satu Mustjoki; Thomas P. Loughran; Jaroslaw P. Maciejewski

Large granular lymphocyte leukemia (LGL) is often associated with immune cytopenias and can cooccur in the context of aplastic anemia (AA) and myelodysplastic syndromes (MDS). We took advantage of the recent description of signal transducer and activator of transcription 3 (STAT3) mutations in LGL clonal expansions to test, using sensitive methods, for the presence of these mutations in a large cohort of 367 MDS and 140 AA cases. STAT3 clones can be found not only in known LGL concomitant cases, but in a small proportion of unsuspected ones (7% AA and 2.5% MDS). In STAT3-mutated AA patients, an interesting trend toward better responses of immunosuppressive therapy and an association with the presence of human leukocyte antigen-DR15 were found. MDSs harboring a STAT3 mutant clone showed a lower degree of bone marrow cellularity and a higher frequency of developing chromosome 7 abnormalities. STAT3-mutant LGL clones may facilitate a persistently dysregulated autoimmune activation, responsible for the primary induction of bone marrow failure in a subset of AA and MDS patients.


Molecular Cancer | 2010

Prostate apoptosis response protein 4 sensitizes human colon cancer cells to chemotherapeutic 5-FU through mediation of an NFκB and microRNA network

Bi-Dar Wang; Christina Leah B. Kline; Thomas L. Olson; Bryan Frank; Truong Luu; Arun K. Sharma; Gavin P. Robertson; Matthew T. Weirauch; Steven R. Patierno; Joshua M. Stuart; Rosalyn B. Irby; Norman H. Lee

BackgroundDiminished expression or activity of prostate apoptosis response protein 4 (Par-4) has been demonstrated in a number of cancers, although reports on Par-4 expression during colon cancer progression are lacking. An understanding of the molecular events in conjunction with the genetic networks affected by Par-4 is warranted.ResultsColon cancer specimens derived from patients have significantly diminished expression of Par-4 mRNA relative to paired normal colon. Hence, the functional consequences of reintroducing Par-4 into HT29 colon cancer cells were assessed. Overexpression augmented the interaction of Par-4 with NFκB in the cytosol but not nucleus, and facilitated apoptosis in the presence of 5-fluorouracil (5-FU). Analogous findings were obtained when AKT1 pro-survival signaling was inhibited. Transcriptome profiling identified ~700 genes differentially regulated by Par-4 overexpression in HT29 cells. Nearly all Par-4-regulated genes were shown by promoter analysis to contain cis-binding sequences for NFκB, and meta-analysis of patient expression data revealed that one-third of these genes exist as a recurrent co-regulated network in colon cancer specimens. Sets of genes involved in programmed cell death, cell cycle regulation and interestingly the microRNA pathway were found overrepresented in the network. Noteworthy, Par-4 overexpression decreased NFκB occupancy at the promoter of one particular network gene DROSHA, encoding a microRNA processing enzyme. The resulting down-regulation of DROSHA was associated with expression changes in a cohort of microRNAs. Many of these microRNAs are predicted to target mRNAs encoding proteins with apoptosis-related functions. Western and functional analyses were employed to validate several predictions. For instance, miR-34a up-regulation corresponded with a down-regulation of BCL2 protein. Treating Par-4-overexpressing HT29 cells with a miR-34a antagomir functionally reversed both BCL2 down-regulation and apoptosis by 5-FU. Conversely, bypassing Par-4 overexpression by direct knockdown of DROSHA expression in native HT29 cells increased miR-34a expression and 5-FU sensitivity.ConclusionOur findings suggest that the initiation of apoptotic sensitivity in colon cancer cells can be mediated by Par-4 binding to NFκB in the cytoplasm with consequential changes in the expression of microRNA pathway components.


Leukemia | 2015

Immunosuppressive therapy of LGL leukemia: prospective multicenter phase II study by the Eastern Cooperative Oncology Group (E5998)

Thomas P. Loughran; Lynette Zickl; Thomas L. Olson; Victoria Wang; Dan Zhang; Hanna Rajala; Zainul Hasanali; John M. Bennett; Hillard M. Lazarus; Mark R. Litzow; Andrew M. Evens; Satu Mustjoki; Martin S. Tallman

Failure to undergo activation-induced cell death due to global dysregulation of apoptosis is the pathogenic hallmark of large granular lymphocyte (LGL) leukemia. Consequently, immunosuppressive agents are rational choices for treatment. This first prospective trial in LGL leukemia was a multicenter, phase 2 clinical trial evaluating methotrexate (MTX) at 10 mg/m2 orally weekly as initial therapy (step 1). Patients failing MTX were eligible for treatment with cyclophosphamide at 100 mg orally daily (step 2). The overall response in step 1 was 38% with 95% confidence interval (CI): 26 and 53%. The overall response in step 2 was 64% with 95% CI: 35 and 87%. The median overall survival for patients with anemia was 69 months with a 95% CI lower bound of 46 months and an upper bound not yet reached. The median overall survival for patients with neutropenia has not been reached 13 years from study activation. Serum biomarker studies confirmed the inflammatory milieu of LGL but were not a priori predictive of response. We identify a gene expression signature that correlates with response and may be STAT3 mutation driven. Immunosuppressive therapies have efficacy in LGL leukemia. Gene signature and mutational profiling may be an effective tool in determining whether MTX is an appropriate therapy.


Blood Cancer Journal | 2013

Novel somatic mutations in large granular lymphocytic leukemia affecting the STAT-pathway and T-cell activation

Emma I. Andersson; Hanna Rajala; Samuli Eldfors; Pekka Ellonen; Thomas L. Olson; Andres Jerez; Michael J. Clemente; Olli Kallioniemi; Kimmo Porkka; Caroline Heckman; Thomas P. Loughran; Jaroslaw P. Maciejewski; Satu Mustjoki

T-cell large granular lymphocytic (T-LGL) leukemia is a clonal disease characterized by the expansion of mature CD3+CD8+ cytotoxic T cells. It is often associated with autoimmune disorders and immune-mediated cytopenias. Our recent findings suggest that up to 40% of T-LGL patients harbor mutations in the STAT3 gene, whereas STAT5 mutations are present in 2% of patients. In order to identify putative disease-causing genetic alterations in the remaining T-LGL patients, we performed exome sequencing from three STAT mutation-negative patients and validated the findings in 113 large granular lymphocytic (LGL) leukemia patients. On average, 11 CD8+ LGL leukemia cell-specific high-confidence nonsynonymous somatic mutations were discovered in each patient. Interestingly, all patients had at least one mutation that affects either directly the STAT3-pathway (such as PTPRT) or T-cell activation (BCL11B, SLIT2 and NRP1). In all three patients, the STAT3 pathway was activated when studied by RNA expression or pSTAT3 analysis. Screening of the remaining 113 LGL leukemia patients did not reveal additional patients with same mutations. These novel mutations are potentially biologically relevant and represent rare genetic triggers for T-LGL leukemia, and are associated with similar disease phenotype as observed in patients with mutations in the STAT3 gene.


BMC Bioinformatics | 2015

Identification of indels in next-generation sequencing data

Aakrosh Ratan; Thomas L. Olson; Thomas P. Loughran; Webb Miller

BackgroundThe discovery and mapping of genomic variants is an essential step in most analysis done using sequencing reads. There are a number of mature software packages and associated pipelines that can identify single nucleotide polymorphisms (SNPs) with a high degree of concordance. However, the same cannot be said for tools that are used to identify the other types of variants. Indels represent the second most frequent class of variants in the human genome, after single nucleotide polymorphisms. The reliable detection of indels is still a challenging problem, especially for variants that are longer than a few bases.ResultsWe have developed a set of algorithms and heuristics collectively called indelMINER to identify indels from whole genome resequencing datasets using paired-end reads. indelMINER uses a split-read approach to identify the precise breakpoints for indels of size less than a user specified threshold, and supplements that with a paired-end approach to identify larger variants that are frequently missed with the split-read approach. We use simulated and real datasets to show that an implementation of the algorithm performs favorably when compared to several existing tools.ConclusionsindelMINER can be used effectively to identify indels in whole-genome resequencing projects. The output is provided in the VCF format along with additional information about the variant, including information about its presence or absence in another sample. The source code and documentation for indelMINER can be freely downloaded from www.bx.psu.edu/miller_lab/indelMINER.tar.gz.


Leukemia | 2016

Activating somatic mutations outside the SH2-domain of STAT3 in LGL leukemia

Emma I. Andersson; Heikki Kuusanmäki; S Bortoluzzi; Sonja Lagström; Alun Parsons; Hanna Rajala; A van Adrichem; Samuli Eldfors; Thomas L. Olson; Michael J. Clemente; A Laasonen; Pekka Ellonen; Caroline Heckman; Thomas P. Loughran; Jaroslaw P. Maciejewski; Satu Mustjoki

Large granular lymphocyte (LGL) leukemia is a rare clonal disease characterized by a persistent increase in the number of CD8+ cytotoxic T cells or CD16/56+ natural killer (NK) cells.1 Patients are prone to recurrent infections and often suffer from severe cytopenias and autoimmune diseases that are thought to be mediated by cytotoxic LGL lymphocytes. LGL leukemia is believed to begin as an antigen-driven immune response followed by the constitutive activation of cytotoxic T lymphocytes or NK cells. Overall, studies have highlighted the dysregulation of different apoptotic pathways (for example, sphingolipid and FAS/FAS ligand) and the activation of survival signaling pathways (for example, PI3K/AKT and RAS).1


GigaScience | 2013

Galaxy tools to study genome diversity

Oscar C. Bedoya-Reina; Aakrosh Ratan; Richard Burhans; Hie Lim Kim; Belinda Giardine; Cathy Riemer; Qunhua Li; Thomas L. Olson; Thomas P. Loughran; Bridgett M. vonHoldt; George H. Perry; Stephan C. Schuster; Webb Miller

BackgroundIntra-species genetic variation can be used to investigate population structure, selection, and gene flow in non-model vertebrates; and due to the plummeting costs for genome sequencing, it is now possible for small labs to obtain full-genome variation data from their species of interest. However, those labs may not have easy access to, and familiarity with, computational tools to analyze those data.ResultsWe have created a suite of tools for the Galaxy web server aimed at handling nucleotide and amino-acid polymorphisms discovered by full-genome sequencing of several individuals of the same species, or using a SNP genotyping microarray. In addition to providing user-friendly tools, a main goal is to make published analyses reproducible. While most of the examples discussed in this paper deal with nuclear-genome diversity in non-human vertebrates, we also illustrate the application of the tools to fungal genomes, human biomedical data, and mitochondrial sequences.ConclusionsThis project illustrates that a small group can design, implement, test, document, and distribute a Galaxy tool collection to meet the needs of a particular community of biologists.

Collaboration


Dive into the Thomas L. Olson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge