Thomas L. Sheppard
Karlsruhe Institute of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Thomas L. Sheppard.
Chemcatchem | 2016
Thomas L. Sheppard; Helen Daly; Alexandre Goguet; Jillian M. Thompson
The mono(μ‐oxo) dicopper cores present in the pores of Cu‐ZSM‐5 are active for the partial oxidation of methane to methanol. However, copper on the external surface reduces the ratio of active, selective sites to unselective sites. More efficient catalysts are obtained by controlling the copper deposition during synthesis. Herein, the external exchange sites of ZSM‐5 samples were passivated by bis(trimethylsilyl) trifluoroacetamide (BSTFA) followed by calcination, promoting selective deposition of intraporous copper during aqueous copper ion exchange. At an optimum level of 1–2 wt % SiO2, IR studies showed a 64 % relative reduction in external copper species and temperature‐programmed oxidation analysis showed an associated increase in the formation of methanol compared with unmodified Cu‐ZSM‐5 samples. It is, therefore, reported that the modified zeolites contained a significantly higher proportion of active, selective copper species than their unmodified counterparts with activity for partial methane oxidation to methanol.
Reaction Chemistry and Engineering | 2017
Ghazal Tofighi; Henning Lichtenberg; Jan Pesek; Thomas L. Sheppard; Wu Wang; Ludger Schöttner; Günter Rinke; Roland Dittmeyer; Jan-Dierk Grunwaldt
A continuous microfluidic setup was developed to study colloidal synthesis of gold nanoparticles using tetrachloroauric acid as precursor, sodium borohydride as reducing agent and PVP as stabilizer. The setup consists of pressurized vessels that allow pulsation-free flow of reactants and a microfluidic chip with integrated micromixers essential for efficient mixing with small mixing time (2 ms) followed by a meandering microchannel. The microfluidic chip enables recording X-ray absorption spectra (XAS) in situ at different positions along the microchannel at high flow rates approaching turbulent mixing conditions and thus to correlate reaction time with changes in the nanoparticle structure. Significant contributions of oxidized gold could be observed after the first 6 ms of the reaction, whereas after 10 ms principally all gold appeared to be in a metallic state. The nanoparticles obtained were characterized ex situ by various complementary techniques. The resulting nanoparticles had average diameter of 1.0 nm and narrow size distributions compared with those produced in a batch reactor. Depositing the nanoparticles on TiO2 resulted in catalysts with two different Au loadings (0.7 and 1.7 wt% Au/TiO2) which exhibited good CO oxidation activity.
Journal of the American Chemical Society | 2017
Thomas L. Sheppard; Stephen W. T. Price; Federico Benzi; Sina Baier; Michael Klumpp; Roland Dittmeyer; Wilhelm Schwieger; Jan-Dierk Grunwaldt
A Cu/ZnO/Al2O3@ZSM-5 core@shell catalyst active for one-step conversion of synthesis gas to dimethyl ether (DME) was imaged simultaneously and in situ using synchrotron-based micro X-ray fluorescence (μ-XRF), X-ray diffraction (μ-XRD), and scanning transmission X-ray microscopy (STXM) computed tomography (CT) with micrometer spatial resolution. An identical sample volume was imaged stepwise, first under oxidizing and reducing atmospheres (imitating calcination and activation processes), and then under model reaction conditions for DME synthesis (H2:CO:CO2 ratio of 16:8:1, up to 250 °C). The multimodal imaging methods offered insights into the active metal structure and speciation within the catalyst, and allowed imaging of both the catalyst core and zeolite shell in a single acquisition. Dispersion of nanosized Cu species was observed in the catalyst core during reduction, with formation of a metastable Cu+ phase at the core-shell interface. Under DME reaction conditions at 1 bar, the coexistence of Cu0 in the active catalyst core together with partially oxidized Cu species was unraveled. The zeolite shell and core-shell interface remained stable under all conditions, preserving the bifunctional nature of the catalyst. These observations are inaccessible using standard bulk techniques like X-ray absorption spectroscopy (XAS) and XRD, demonstrating the potential of multimodal in situ X-ray CT for characterization of hierarchically designed materials, which stand to benefit tremendously from such 3D spatially resolved measurements.
Microscopy and Microanalysis | 2017
Sina Baier; Christian Danvad Damsgaard; Michael Klumpp; Juliane Reinhardt; Thomas L. Sheppard; Zoltan Imre Balogh; Takeshi Kasama; Federico Benzi; Jakob Birkedal Wagner; Wilhelm Schwieger; Christian G. Schroer; Jan-Dierk Grunwaldt
When using bifunctional core@shell catalysts, the stability of both the shell and core-shell interface is crucial for catalytic applications. In the present study, we elucidate the stability of a CuO/ZnO/Al2O3@ZSM-5 core@shell material, used for one-stage synthesis of dimethyl ether from synthesis gas. The catalyst stability was studied in a hierarchical manner by complementary environmental transmission electron microscopy (ETEM), scanning electron microscopy (SEM) and in situ hard X-ray ptychography with a specially designed in situ cell. Both reductive activation and reoxidation were applied. The core-shell interface was found to be stable during reducing and oxidizing treatment at 250°C as observed by ETEM and in situ X-ray ptychography, although strong changes occurred in the core on a 10 nm scale due to the reduction of copper oxide to metallic copper particles. At 350°C, in situ X-ray ptychography indicated the occurrence of structural changes also on the µm scale, i.e. the core material and parts of the shell undergo restructuring. Nevertheless, the crucial core-shell interface required for full bifunctionality appeared to remain stable. This study demonstrates the potential of these correlative in situ microscopy techniques for hierarchically designed catalysts.
Chemcatchem | 2018
Yakub Fam; Thomas L. Sheppard; Ana Diaz; Torsten Scherer; Mirko Holler; Wu Wang; Di Wang; Patrice Brenner; Arne Wittstock; Jan-Dierk Grunwaldt
Tomographic imaging of catalysts allows non‐invasive investigation of structural features and chemical properties by combining large fields of view, high spatial resolution, and the ability to probe multiple length scales. Three complementary nanotomography techniques, (i) electron tomography, (ii) focused ion beam—scanning electron microscopy, and (iii) synchrotron ptychographic X‐ray computed tomography, were applied to render the 3D structure of monolithic nanoporous gold doped with ceria, a catalytically active material with hierarchical porosity on the nm and μm scale. The resulting tomograms were used to directly measure volume fraction, surface area and pore size distribution, together with 3D pore network mapping. Each technique is critically assessed in terms of approximate spatial resolution, field of view, sample preparation and data processing requirements. Ptychographic X‐ray computed tomography produced 3D electron density maps with isotropic spatial resolution of 23 nm, the highest so far demonstrated for a catalyst material, and is highlighted as an emerging method with excellent potential in the field of catalysis.
Catalysis Science & Technology | 2017
Federico Benzi; Thomas L. Sheppard; Dmitry E. Doronkin; Debora Motta Meira; Andreas M. Gänzler; Sina Baier; Jan-Dierk Grunwaldt
Pt-based diesel oxidation catalysts were investigated for CO oxidation activity under rapid transient temperature conditions based on a realistic driving cycle, which is presently a focal point in exhaust gas aftertreatment. Experiments were performed in a microreactor setup allowing rapid heating/cooling coupled with operando Turbo X-ray absorption spectroscopy (T-XAS) and on-line product analysis by mass spectrometry. Significant differences were observed in catalyst structure and performance depending on the temperature ramp rate. Particularly for Pt/Al2O3, the Pt oxidation state followed a dynamic hysteresis profile during CO oxidation light-off and light-out. In contrast, in Pt–CeO2/Al2O3, ceria acted as an oxygen storage buffer, reducing the width of the Pt oxidation/reduction hysteresis loop as a function of the temperature ramp rate. Ceria also supplied oxygen to the Pt surface, helping to maintain high activity during cooling down and at lower temperatures during transient conditions. This study shows the potential insights into the reaction mechanism available when considering transient temperature as an experimental condition during operando spectroscopic studies in exhaust gas catalysis. The current method is applicable to virtually any rapid transient temperature driving cycle.
Chemical Communications | 2015
Tobias Günter; Hudson W.P. Carvalho; Dmitry E. Doronkin; Thomas L. Sheppard; Pieter Glatzel; Andrew J. Atkins; Julian Rudolph; Christoph R. Jacob; Maria Casapu; Jan-Dierk Grunwaldt
ACS Catalysis | 2018
Manuel Selinsek; Benedikt J. Deschner; Dmitry E. Doronkin; Thomas L. Sheppard; Jan-Dierk Grunwaldt; Roland Dittmeyer
Applied Catalysis A-general | 2018
Manuel Gentzen; Dmitry E. Doronkin; Thomas L. Sheppard; Jan-Dierk Grunwaldt; Jörg Sauer; Silke Behrens
Catalysts | 2018
Paul Sprenger; Thomas L. Sheppard; Jussi-Petteri Suuronen; Abhijeet Gaur; Federico Benzi; Jan-Dierk Grunwaldt