Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thomas Lachand-Robert is active.

Publication


Featured researches published by Thomas Lachand-Robert.


Calculus of Variations and Partial Differential Equations | 2001

Newton's problem of the body of minimal resistance under a single-impact assumption

Myriam Comte; Thomas Lachand-Robert

Abstract. We consider the problem of the body of minimal resistance as formulated in [2], Sect. 5: minimize


Numerische Mathematik | 2001

A numerical approach to variational problems subject to convexity constraint

Guillaume Carlier; Thomas Lachand-Robert; Bertrand Maury

F(u):=\int_\Omega dx/(1+|\nabla u(x)|^2)


Siam Journal on Mathematical Analysis | 2002

Functions and Domains Having Minimal Resistance Under a Single-Impact Assumption

Myriam Comte; Thomas Lachand-Robert

, where


Proceedings of the American Mathematical Society | 1999

Extremal points of a functional on the set of convex functions

Thomas Lachand-Robert; Mark A. Peletier

\Omega


Annales De L Institut Henri Poincare-analyse Non Lineaire | 2001

An example of non-convex minimization and an application to Newton's problem of the body of least resistance

Thomas Lachand-Robert; Mark A. Peletier

is the unit disc of


Esaim: Proceedings | 2001

H1-projection into the set of convex functions : a saddle-point formulation

Guillaume Carlier; Thomas Lachand-Robert; Bertrand Maury

{\mathbb R}^2


Comptes Rendus De L Academie Des Sciences Serie I-mathematique | 1997

Minimisation de fonctionnelles dans un ensemble de fonctions convexes

Thomas Lachand-Robert; Mark A. Peletier

, in the class of radial functions


Comptes Rendus De L Academie Des Sciences Serie I-mathematique | 2001

Régularité des solutions d'un problème variationnel sous contrainte de convexité

Guillaume Carlier; Thomas Lachand-Robert

u:\Omega\to[0,M]


Journal of Convex Analysis | 2008

Representation of the polar cone of convex functions and applications

Thomas Lachand-Robert; Guillaume Carlier

satisfying a geometrical property (1), corresponding to a single-impact assumption (


Calculus of Variations and Partial Differential Equations | 2002

The minimum of quadratic functionals of the gradient on the set of convex functions

Thomas Lachand-Robert; Mark A. Peletier

M>0

Collaboration


Dive into the Thomas Lachand-Robert's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark A. Peletier

Eindhoven University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge