Thomas Lahaye
University of Tübingen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Thomas Lahaye.
Science | 2009
Jens Boch; Heidi Scholze; Sebastian Schornack; Angelika Landgraf; Simone Hahn; Sabine Kay; Thomas Lahaye; Anja Nickstadt; Ulla Bonas
TAL Order Xanthomonas bacteria attack their plant hosts by delivering their own transcription-activator–like (TAL) proteins into the plant cell nucleus and alter the plants gene regulation (see the Perspective by Voytas and Joung). Moscou and Bogdanove (p. 1501, published online 29 October: see the cover) and Boch et al. (p. 1509, published online 29 October) have now discovered how the similar but not identical repeats in the TAL proteins encode the specificity needed for the proteins to find their targets. Each repeat is specific for one DNA base pair, a specificity encoded by hypervariable amino acid positions. Combining several repeats with different amino acids in the hypervariable positions allowed the production of new effectors that targeted new DNA sites. Artificial effectors with new specificities have been constructed that mimic proteins injected into plant cells by pathogens. The pathogenicity of many bacteria depends on the injection of effector proteins via type III secretion into eukaryotic cells in order to manipulate cellular processes. TAL (transcription activator–like) effectors from plant pathogenic Xanthomonas are important virulence factors that act as transcriptional activators in the plant cell nucleus, where they directly bind to DNA via a central domain of tandem repeats. Here, we show how target DNA specificity of TAL effectors is encoded. Two hypervariable amino acid residues in each repeat recognize one base pair in the target DNA. Recognition sequences of TAL effectors were predicted and experimentally confirmed. The modular protein architecture enabled the construction of artificial effectors with new specificities. Our study describes the functionality of a distinct type of DNA binding domain and allows the design of DNA binding domains for biotechnology.
Nucleic Acids Research | 2011
Claudio Mussolino; Robert Morbitzer; Fabienne Lütge; Nadine Dannemann; Thomas Lahaye; Toni Cathomen
Sequence-specific nucleases represent valuable tools for precision genome engineering. Traditionally, zinc-finger nucleases (ZFNs) and meganucleases have been used to specifically edit complex genomes. Recently, the DNA binding domains of transcription activator-like effectors (TALEs) from the bacterial pathogen Xanthomonas have been harnessed to direct nuclease domains to desired genomic loci. In this study, we tested a panel of truncation variants based on the TALE protein AvrBs4 to identify TALE nucleases (TALENs) with high DNA cleavage activity. The most favorable parameters for efficient DNA cleavage were determined in vitro and in cellular reporter assays. TALENs were designed to disrupt an EGFP marker gene and the human loci CCR5 and IL2RG. Gene editing was achieved in up to 45% of transfected cells. A side-by-side comparison with ZFNs showed similar gene disruption activities by TALENs but significantly reduced nuclease-associated cytotoxicities. Moreover, the CCR5-specific TALEN revealed only minimal off-target activity at the CCR2 locus as compared to the corresponding ZFN, suggesting that the TALEN platform enables the design of nucleases with single-nucleotide specificity. The combination of high nuclease activity with reduced cytotoxicity and the simple design process marks TALENs as a key technology platform for targeted modifications of complex genomes.
Current Opinion in Plant Biology | 2010
Adam J. Bogdanove; Sebastian Schornack; Thomas Lahaye
Transcription activator like effectors (TALEs) are injected via the type III secretion pathway of many plant pathogenic Xanthomonas spp. into plant cells where they contribute to disease or trigger resistance by binding to DNA and turning on TALE-specific host genes. Advances in our understanding of TALEs and their targets have yielded new models for pathogen recognition and defense. Similarly, we have gained insight into plant molecules and processes that can be co-opted to promote infection. Recent elucidation of the basis for specificity in DNA binding by TALEs expedites further discovery and opens the door to biotechnological applications. This article reviews the most significant findings in TALE research, with a focus on recent advances, and discusses future prospects including pressing questions yet to be answered.
Proceedings of the National Academy of Sciences of the United States of America | 2010
Robert Morbitzer; Patrick Römer; Jens Boch; Thomas Lahaye
Proteins that can be tailored to bind desired DNA sequences are key tools for molecular biology. Previous studies suggested that DNA-binding specificity of transcription activator-like effectors (TALEs) from the bacterial genus Xanthomonas is defined by repeat-variable diresidues (RVDs) of tandem-arranged 34/35-amino acid repeat units. We have studied chimeras of two TALEs differing in RVDs and non-RVDs and found that, in contrast to the critical contributions by RVDs, non-RVDs had no major effect on the DNA-binding specificity of the chimeras. This finding suggests that one needs only to modify the RVDs to generate designer TALEs (dTALEs) to activate transcription of user-defined target genes. We used the scaffold of the TALE AvrBs3 and changed its RVDs to match either the tomato Bs4, the Arabidopsis EGL3, or the Arabidopsis KNAT1 promoter. All three dTALEs transcriptionally activated the desired promoters in a sequence-specific manner as mutations within the targeted DNA sequences abolished promoter activation. This study is unique in showing that chromosomal loci can be targeted specifically by dTALEs. We also engineered two AvrBs3 derivatives with four additional repeat units activating specifically either the pepper Bs3 or UPA20 promoter. Because AvrBs3 activates both promoters, our data show that addition of repeat units facilitates TALE-specificity fine-tuning. Finally, we demonstrate that the RVD NK mediates specific interaction with G nucleotides that thus far could not be targeted specifically by any known RVD type. In summary, our data demonstrate that the TALE scaffold can be tailored to target user-defined DNA sequences in whole genomes.
Nucleic Acids Research | 2011
Robert Morbitzer; Janett Elsäesser; Jens Hausner; Thomas Lahaye
Transcription activator-like effector (TALE) DNA binding proteins show tremendous potential as molecular tools for targeted binding to any desired DNA sequence. Their DNA binding domain consists of tandem arranged repeats, and due to this repetitive structure it is challenging to generate designer TALEs (dTALEs) with user-defined specificity. We present a cloning approach that facilitates the assembly of multiple repeat-encoding DNA fragments that translate into dTALEs with pre-defined DNA binding specificity. This method makes use of type IIS restriction enzymes in two sequential cut-ligase reactions to build dTALE repeat arrays. We employed this modular approach for generation of a dTALE that differentiates between two highly similar DNA sequences that are both targeted by the Xanthomonas TALE, AvrBs3. These data show that this modular assembly system allows rapid generation of highly specific TALE-type DNA binding domains that target binding sites of predefined length and sequence. This approach enables the rapid and flexible production of dTALEs for gene regulation and genome editing in routine and high-throughput applications.
Current Opinion in Microbiology | 2002
Ulla Bonas; Thomas Lahaye
Plant disease resistance is often determined by complementary pairs of resistance genes (from the plant) and avirulence genes (from the invading pathogen). This gene-for-gene interaction has generally been interpreted as a receptor-ligand model in which the avirulence protein binds to the corresponding resistance protein, which in turn initiates plant defense. Recent studies indicate that co-localization of avirulence and resistance proteins is essential for their function. However, there is also accumulating evidence that resistance proteins are not the primary receptor for the avirulence protein. We review advances in our understanding of gene-for-gene resistance and examine validity of the receptor-ligand model and other proposed models in the context of the most recent findings.
Nucleic Acids Research | 2012
Sebastian Bultmann; Robert Morbitzer; Christine S. Schmidt; Katharina Thanisch; Fabio Spada; Janett Elsaesser; Thomas Lahaye; Heinrich Leonhardt
Specific control of gene activity is a valuable tool to study and engineer cellular functions. Recent studies uncovered the potential of transcription activator-like effector (TALE) proteins that can be tailored to activate user-defined target genes. It remains however unclear whether and how epigenetic modifications interfere with TALE-mediated transcriptional activation. We studied the activity of five designer TALEs (dTALEs) targeting the oct4 pluripotency gene. In vitro assays showed that the five dTALEs that target distinct sites in the oct4 promoter had the expected DNA specificity and comparable affinities to their corresponding DNA targets. In contrast to their similar in vitro properties, transcriptional activation of oct4 by these distinct dTALEs varied up to 25-fold. While dTALEs efficiently upregulated transcription of the active oct4 promoter in embryonic stem cells (ESCs) they failed to activate the silenced oct4 promoter in ESC-derived neural stem cells (NSCs), indicating that as for endogenous transcription factors also dTALE activity is limited by repressive epigenetic mechanisms. We therefore targeted the activity of epigenetic modulators and found that chemical inhibition of histone deacetylases by valproic acid or DNA methyltransferases by 5-aza-2′-deoxycytidine facilitated dTALE-mediated activation of the epigenetically silenced oct4 promoter in NSCs. Notably, demethylation of the oct4 promoter occurred only if chemical inhibitors and dTALEs were applied together but not upon treatment with inhibitors or dTALEs only. These results show that dTALEs in combination with chemical manipulation of epigenetic modifiers facilitate targeted transcriptional activation of epigenetically silenced target genes.
Nucleic Acids Research | 2013
Joshua F. Meckler; Mital S. Bhakta; Moon-Soo Kim; Robert Ovadia; Chris Habrian; Artem Zykovich; Abigail S. Yu; Sarah H. Lockwood; Robert Morbitzer; Janett Elsäesser; Thomas Lahaye; David J. Segal; Enoch P. Baldwin
Transcription activator-like effectors (TALEs) have revolutionized the field of genome engineering. We present here a systematic assessment of TALE DNA recognition, using quantitative electrophoretic mobility shift assays and reporter gene activation assays. Within TALE proteins, tandem 34-amino acid repeats recognize one base pair each and direct sequence-specific DNA binding through repeat variable di-residues (RVDs). We found that RVD choice can affect affinity by four orders of magnitude, with the relative RVD contribution in the order NG > HD ∼ NN ≫ NI > NK. The NN repeat preferred the base G over A, whereas the NK repeat bound G with 103-fold lower affinity. We compared AvrBs3, a naturally occurring TALE that recognizes its target using some atypical RVD-base combinations, with a designed TALE that precisely matches ‘standard’ RVDs with the target bases. This comparison revealed unexpected differences in sensitivity to substitutions of the invariant 5′-T. Another surprising observation was that base mismatches at the 5′ end of the target site had more disruptive effects on affinity than those at the 3′ end, particularly in designed TALEs. These results provide evidence that TALE–DNA recognition exhibits a hitherto un-described polarity effect, in which the N-terminal repeats contribute more to affinity than C-terminal ones.
Trends in Plant Science | 2001
Thomas Lahaye; Ulla Bonas
Most Gram-negative phytopathogenic bacteria are thought to inject effector proteins into the plant cell via a type III secretion system that is essential for pathogenicity. Plant targets and the mode of action of type III effector proteins, which include avirulence (Avr) proteins, are largely unknown. However, recent findings have shed light on the molecular mechanisms of Avr action. Here, we focus on two classes of Avr proteins (the AvrBs3 and AvrRxv/YopJ families) that have been suggested to act as transcription factors and proteases, respectively.
New Phytologist | 2010
Patrick Römer; Sabine Recht; Tina Strauß; Janett Elsaesser; Sebastian Schornack; Jens Boch; Shiping Wang; Thomas Lahaye
*Plant pathogenic bacteria of the genus Xanthomonas inject transcription activator-like effector (TALe) proteins that bind to and activate host promoters, thereby promoting disease or inducing plant defense. TALes bind to corresponding UPT (up-regulated by TALe) promoter boxes via tandemly arranged 34/35-amino acid repeats. Recent studies uncovered the TALe code in which two amino acid residues of each repeat define specific pairing to UPT boxes. *Here we employed the TALe code to predict potential UPT boxes in TALe-induced host promoters and analyzed these via beta-glucuronidase (GUS) reporter and electrophoretic mobility shift assays (EMSA). *We demonstrate that the Xa13, OsTFX1 and Os11N3 promoters from rice are induced directly by the Xanthomonas oryzae pv. oryzae TALes PthXo1, PthXo6 and AvrXa7, respectively. We identified and functionally validated a UPT box in the corresponding rice target promoter for each TALe and show that box mutations suppress TALe-mediated promoter activation. Finally, EMSA demonstrate that code-predicted UPT boxes interact specifically with corresponding TALes. *Our findings show that variations in the UPT boxes of different rice accessions correlate with susceptibility or resistance of these accessions to the bacterial blight pathogen.