Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thomas M. Chambers is active.

Publication


Featured researches published by Thomas M. Chambers.


Microbiological Research | 1992

Evolution and ecology of influenza A viruses.

Robert G. Webster; William J. Bean; O T Gorman; Thomas M. Chambers; Yoshihiro Kawaoka

Wild aquatic bird populations have long been considered the natural reservoir for influenza A viruses with virus transmission from these birds seeding other avian and mammalian hosts. While most evidence still supports this dogma, recent studies in bats have suggested other reservoir species may also exist. Extensive surveillance studies coupled with an enhanced awareness in response to H5N1 and pandemic 2009 H1N1 outbreaks is also revealing a growing list of animals susceptible to infection with influenza A viruses. Although in a relatively stable host-pathogen interaction in aquatic birds, antigenic, and genetic evolution of influenza A viruses often accompanies interspecies transmission as the virus adapts to a new host. The evolutionary changes in the new hosts result from a number of processes including mutation, reassortment, and recombination. Depending on host and virus these changes can be accompanied by disease outbreaks impacting wildlife, veterinary, and public health.


Journal of Virology | 2000

Sialic acid species as a determinant of the host range of influenza A viruses.

Yasuo Suzuki; Toshihiro Ito; Takashi Suzuki; R. E. Holland; Thomas M. Chambers; Makoto Kiso; Hideharu Ishida; Yoshihiro Kawaoka

ABSTRACT The distribution of sialic acid (SA) species varies among animal species, but the biological role of this variation is largely unknown. Influenza viruses differ in their ability to recognize SA-galactose (Gal) linkages, depending on the animal hosts from which they are isolated. For example, human viruses preferentially recognize SA linked to Gal by the α2,6(SAα2,6Gal) linkage, while equine viruses favor SAα2,3Gal. However, whether a difference in relative abundance of specific SA species (N-acetylneuraminic acid [NeuAc] andN-glycolylneuraminic acid [NeuGc]) among different animals affects the replicative potential of influenza viruses is uncertain. We therefore examined the requirement for the hemagglutinin (HA) for support of viral replication in horses, using viruses whose HAs differ in receptor specificity. A virus with an HA recognizing NeuAcα2,6Gal but not NeuAcα2,3Gal or NeuGcα2,3Gal failed to replicate in horses, while one with an HA recognizing the NeuGcα2,3Gal moiety replicated in horses. Furthermore, biochemical and immunohistochemical analyses and a lectin-binding assay demonstrated the abundance of the NeuGcα2,3Gal moiety in epithelial cells of horse trachea, indicating that recognition of this moiety is critical for viral replication in horses. Thus, these results provide evidence of a biological effect of different SA species in different animals.


Virology | 1988

Is the gene pool of influenza viruses in shorebirds and gulls different from that in wild ducks

Yoshihiro Kawaoka; Thomas M. Chambers; William J. L. Sladen; Robert Gwebster

Evidence is presented for a second major gene pool of influenza A viruses in nature. Shorebirds and gulls harbor influenza viruses when sampled in the spring and fall. Approximately half of the viruses isolated have the potential to infect ducks but the remainder do not. The hemagglutinin subtypes that are prevalent in wild ducks were rare or absent in shorebirds and gulls.


Journal of Virology | 2005

Attenuation of Equine Influenza Viruses through Truncations of the NS1 Protein

Michelle Quinlivan; Dmitriy Zamarin; Adolfo García-Sastre; Ann Cullinane; Thomas M. Chambers; Peter Palese

ABSTRACT Equine influenza is a common disease of the horse, causing significant morbidity worldwide. Here we describe the establishment of a plasmid-based reverse genetics system for equine influenza virus. Utilizing this system, we generated three mutant viruses encoding carboxy-terminally truncated NS1 proteins. We have previously shown that a recombinant human influenza virus lacking the NS1 gene (delNS1) could only replicate in interferon (IFN)-incompetent systems, suggesting that the NS1 protein is responsible for IFN antagonist activity. Contrary to previous findings with human influenza virus, we found that in the case of equine influenza virus, the length of the NS1 protein did not correlate with the level of attenuation of that virus. With equine influenza virus, the mutant virus with the shortest NS1 protein turned out to be the least attenuated. We speculate that the basis for attenuation of the equine NS1 mutant viruses generated is related to their level of NS1 protein expression. Our findings show that the recombinant mutant viruses are impaired in their ability to inhibit IFN production in vitro and they do not replicate as efficiently as the parental recombinant strain in embryonated hen eggs, in MDCK cells, or in vivo in a mouse model. Therefore, these attenuated mutant NS1 viruses may have potential as candidates for a live equine influenza vaccine.


Virology | 1990

MOLECULAR CHARACTERIZATION OF A NEW HEMAGGLUTININ, SUBTYPE H14, OF INFLUENZA A VIRUS

Yoshihiro Kawaoka; Svetlana Yamnikova; Thomas M. Chambers; Dmitri K. Lvov; Robert G. Webster

Two influenza A viruses whose hemagglutinin (HA) did not react with any of the reference antisera for the 13 recognized HA subtypes were isolated from mallard ducks in the USSR. Antigenic analysis by hemagglutination inhibition and double immunodiffusion tests showed that the HAs of these viruses are similar to each other but distinct from the HAs of other influenza A viruses. Nucleotide sequence analysis showed that these HA genes differ from each other by only 21 nucleotides. However, they differ from all other HA subtypes at the amino acid level by at least 31% in HAI. Thus, we propose that the HAs of these viruses [A/Mallard/Gurjev/263/82 (H14N5) and A/Mallard/Gurjev/244/82 (H14N6) belong to a previously unrecognized subtype, and are designated H14. Unlike any other HAs of influenza viruses, the H14 HAs contained lysine at the cleavage site between HA1 and HA2 instead of arginine. Experimental infection of domestic poultry and ferrets with A/Mallard/Gurjev/263/82 (H14N5) showed that the virus is avirulent for these animals. Based on comparative sequence analysis of different HA genes, it is suggested that differences of 30% or more at the amino acid level in HA1 constitute separate subtypes. Phylogenetic analysis of representatives of each HA subtype showed that H14 is one of the most recently diverged lineages while H8 and H12 branched off early during the evolution of the HA subtypes. These latter two subtypes (H8 and H12) have been isolated very infrequently in recent years, suggesting that these old subtypes may be disappearing from the influenza reservoirs in nature.


Veterinary Microbiology | 2009

Antigenic and genetic variations in European and North American equine influenza virus strains (H3N8) isolated from 2006 to 2007

Neil Bryant; Adam Rash; Colin A. Russell; Julie Ross; Annie Cooke; Samantha Bowman; Shona MacRae; Nicola S. Lewis; R. Paillot; Reto Zanoni; Hanspeter Meier; Lowri A. Griffiths; Janet M. Daly; Ashish Tiwari; Thomas M. Chambers; J. Richard Newton; Debra Elton

Equine influenza virus (EIV) surveillance is important in the management of equine influenza. It provides data on circulating and newly emerging strains for vaccine strain selection. To this end, antigenic characterisation by haemaggluttination inhibition (HI) assay and phylogenetic analysis was carried out on 28 EIV strains isolated in North America and Europe during 2006 and 2007. In the UK, 20 viruses were isolated from 28 nasopharyngeal swabs that tested positive by enzyme-linked immunosorbent assay. All except two of the UK viruses were characterised as members of the Florida sublineage with similarity to A/eq/Newmarket/5/03 (clade 2). One isolate, A/eq/Cheshire/1/06, was characterised as an American lineage strain similar to viruses isolated up to 10 years earlier. A second isolate, A/eq/Lincolnshire/1/07 was characterised as a member of the Florida sublineage (clade 1) with similarity to A/eq/Wisconsin/03. Furthermore, A/eq/Lincolnshire/1/06 was a member of the Florida sublineage (clade 2) by haemagglutinin (HA) gene sequence, but appeared to be a member of the Eurasian lineage by the non-structural gene (NS) sequence suggesting that reassortment had occurred. A/eq/Switzerland/P112/07 was characterised as a member of the Eurasian lineage, the first time since 2005 that isolation of a virus from this lineage has been reported. Seven viruses from North America were classified as members of the Florida sublineage (clade 1), similar to A/eq/Wisconsin/03. In conclusion, a variety of antigenically distinct EIVs continue to circulate worldwide. Florida sublineage clade 1 viruses appear to predominate in North America, clade 2 viruses in Europe.


Archives of Virology | 2001

Diverged evolution of recent equine-2 influenza (H3N8) viruses in the Western Hemisphere

A. C. K. Lai; Thomas M. Chambers; R. E. Holland; P. S. Morley; Deborah M. Haines; Hugh G.G. Townsend; M. Barrandeguy

Summary. We reported previously that equine-2 influenza A virus (H3N8) had evolved into two genetically and antigenically distinct “Eurasian” and “American” lineages. Phylogenetic analysis, using the HA1 gene of more recent American isolates, indicated a further divergence of these viruses into three evolution lineages: A South American lineage, a Kentucky lineage, and a Florida lineage. These multiple evolution pathways were not due to geographic barriers, as viruses from different lineages co-circulated. For the Kentucky lineage, the evolution rate was estimated to be 0.89 amino acid substitutions per year, which agreed with the previously estimated rate of 0.8. For the South American lineage, the evolution rate was estimated to be only 0.27 amino acid substitutions per year. This low evolution rate was probably due to a unique alternating Ser138 to Ala138 substitutions at antigenic site A. For the Kentucky lineage, there was a preference for sequential nonsynonymous substitutions at antigenic site B, which was also a “hot spot” for amino acid substitutions. Convalescent sera had minimal cross-reactivity to viruses of different lineages, indicating antigenic distinctions among these viruses. In contrast to human H3N2 viruses, our results suggested that the evolution of equine-2 influenza virus resembled the multiple evolution pathways of influenza B virus.


Equine Veterinary Journal | 2010

Efficacy of a cold‐adapted, intranasal, equine influenza vaccine: challenge trials

Hugh G.G. Townsend; S. J. Penner; T. C. Watts; A. Cook; J. Bogdan; D. M. Haines; S. Griffin; Thomas M. Chambers; R. E. Holland; Patricia Whitaker-Dowling; Julius S. Youngner; Randy Sebring

A randomised, controlled, double-blind, influenza virus, aerosol challenge of horses was undertaken to determine the efficacy of a cold-adapted, temperature sensitive, modified-live virus, intranasal, equine influenza vaccine. Ninety 11-month-old influenza-naïve foals were assigned randomly to 3 groups (20 vaccinates and 10 controls per group) and challenged 5 weeks, 6 and 12 months after a single vaccination. Challenges were performed on Day 0 in a plastic-lined chamber. Between Days 1 and 10, animals were examined daily for evidence of clinical signs of influenza. Nasal swabs for virus isolation were obtained on Day 1 and Days 1 to 8 and blood samples for serology were collected on Days 1, 7 and 14. There was no adverse response to vaccination in any animal. Following challenge at 5 weeks and 6 months, vaccinates had significantly lower clinical scores (P = 0.0001 and 0.005, respectively), experienced smaller increases in rectal temperature (P = 0.0008 and 0.0007, respectively) and shed less virus (P<0.0001 and P = 0.03, respectively) over fewer days (P<0.0001 and P = 0.002, respectively) than did the controls. After the 12 month challenge, rectal temperatures (P = 0.006) as well as the duration (P = 0.03) and concentration of virus shed (P = 0.04) were significantly reduced among vaccinated animals. The results of this study showed that 6 months after a single dose of vaccine the duration and severity of clinical signs were markedly reduced amongst vaccinated animals exposed to a severe live-virus challenge. Appropriate use of this vaccine should lead to a marked reduction in the frequency, severity and duration of outbreaks of equine influenza in North America.


Virology | 1988

Protection of chickens from lethal influenza infection by vaccinia-expressed hemagglutinin

Thomas M. Chambers; Yoshihiro Kawaoka; Robert G. Webster

To study the immune response of the chicken to specific influenza proteins, we have constructed a recombinant vaccinia virus containing the hemagglutinin gene of influenza A/Turkey/Ireland/1378/83 (H5N8). In mammalian cell culture the hemagglutinin expressed by this recombinant virus was full-length, cleaved into HA1 and HA2 in the absence of trypsin, and transported to the cell surface, confirming that other virus products are not required for cleavage activation. Chickens inoculated through the wing web with the live recombinant virus produced extremely low levels of hemagglutination-inhibiting or infectivity-neutralizing antibody. However, they were protected from lethal H5 influenza virus challenge. Protection extended to the antigenically distinct virulent H5 viruses, Chicken/Pennsylvania/1370/83 and Chicken/Scotland/59. Chemically bursectomized vaccinated chickens were not protected, whereas normal chickens with very low antibody levels (less than 10) obtained by passive transfer were protected in a dose-dependent fashion. This indicates that despite the low antibody titers induced by vaccination, protection was mediated by antibody.


Veterinary Microbiology | 2011

Isolation and characterisation of equine influenza viruses (H3N8) from Europe and North America from 2008 to 2009

Neil Bryant; Adam Rash; Alana Woodward; Elizabeth Medcalf; Maud Helwegen; Franziska Wohlfender; Fatima Cruz; Claudia Herrmann; Kerstin Borchers; Ashish Tiwari; Thomas M. Chambers; J. Richard Newton; Jennifer A. Mumford; Debra Elton

Like other influenza A viruses, equine influenza virus undergoes antigenic drift. It is therefore essential that surveillance is carried out to ensure that recommended strains for inclusion in vaccines are kept up to date. Here we report antigenic and genetic characterisation carried out on equine influenza virus strains isolated in North America and Europe over a 2-year period from 2008 to 2009. Nasopharyngeal swabs were taken from equines showing acute clinical signs and submitted to diagnostic laboratories for testing and virus isolation in eggs. The sequence of the HA1 portion of the viral haemagglutinin was determined for each strain. Where possible, sequence was determined directly from swab material as well as from virus isolated in eggs. In Europe, 20 viruses were isolated from 15 sporadic outbreaks and 5 viruses were isolated from North America. All of the European and North American viruses were characterised as members of the Florida sublineage, with similarity to A/eq/Lincolnshire/1/07 (clade 1) or A/eq/Richmond/1/07 (clade 2). Antigenic characterisation by haemagglutination inhibition assay indicated that the two clades could be readily distinguished and there were also at least seven amino acid differences between them. The selection of vaccine strains for 2010 by the expert surveillance panel have taken these differences into account and it is now recommended that representatives of both Florida clade 1 and clade 2 are included in vaccines.

Collaboration


Dive into the Thomas M. Chambers's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert G. Webster

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yoshihiro Kawaoka

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge