Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thomas M. Jarrett is active.

Publication


Featured researches published by Thomas M. Jarrett.


Neuron | 2009

Downregulation of NR3A-Containing NMDARs Is Required for Synapse Maturation and Memory Consolidation

Adam C. Roberts; Javier Díez-García; Ramona M. Rodriguiz; Iciar P. López; Rafael Luján; Rebeca Martínez-Turrillas; Esther Picó; Maile A. Henson; Danilo R. Bernardo; Thomas M. Jarrett; Dallis J. Clendeninn; Laura López-Mascaraque; Guoping Feng; Donald C. Lo; John F. Wesseling; William C. Wetsel; Benjamin D. Philpot; Isabel Pérez-Otaño

NR3A is the only NMDA receptor (NMDAR) subunit that downregulates sharply prior to the onset of sensitive periods for plasticity, yet the functional importance of this transient expression remains unknown. To investigate whether removal/replacement of juvenile NR3A-containing NMDARs is involved in experience-driven synapse maturation, we used a reversible transgenic system that prolonged NR3A expression in the forebrain. We found that removal of NR3A is required to develop strong NMDAR currents, full expression of long-term synaptic plasticity, a mature synaptic organization characterized by more synapses and larger postsynaptic densities, and the ability to form long-term memories. Deficits associated with prolonged NR3A were reversible, as late-onset suppression of transgene expression rescued both synaptic and memory impairments. Our results suggest that NR3A behaves as a molecular brake to prevent the premature strengthening and stabilization of excitatory synapses and that NR3A removal might thereby initiate critical stages of synapse maturation during early postnatal neural development.


Behavioral Neuroscience | 2005

Cocaine Treatment and Prenatal Environment Interact to Disrupt Intergenerational Maternal Behavior in Rats

Josephine M. Johns; Deborah L. Elliott; Vivian E. Hofler; Paul W. Joyner; Matthew S. McMurray; Thomas M. Jarrett; Amber M. Haslup; Christopher L. Middleton; Jay C. Elliott; Cheryl H. Walker

The link between impaired maternal behavior (MB) and cocaine treatment could result from drug-induced decreases in maternal reactivity to offspring, prenatal drug exposure (PDE) in offspring that could alter their ability to elicit MB, or the interaction of both, which could subsequently impair MB of the 1st-generation dams. Following chronic or intermittent cocaine or saline treatment during gestation, rat dams rearing natural or cross-fostered litters were compared along with untreated dams for MB. Untreated 1st-generation females with differentially treated rearing dams and PDE were tested for MB with their natural litters. The authors report disruptions in MB in dams and their 1st-generation offspring, attributable to main and interaction effects of maternal treatment, litter PDE, and rearing experience.


Neuropeptides | 2006

Cocaine treatment alters oxytocin receptor binding but not mRNA production in postpartum rat dams

Thomas M. Jarrett; Matthew S. McMurray; Cheryl H. Walker; Josephine M. Johns

Gestational cocaine treatment in rat dams results in decreased oxytocin (OT) levels, up-regulated oxytocin receptor (OTR) binding density and decreased receptor affinity in the whole amygdala, all concomitant with a significant increase in maternal aggression on postpartum day six. Rat dams with no gestational drug treatment that received an infusion of an OT antagonist directly into the central nucleus of the amygdala (CeA) exhibited similarly high levels of maternal aggression towards intruders. Additionally, studies indicate that decreased OT release from the hypothalamic division of the paraventricular nucleus (PVN) is coincident with heightened maternal aggression in rats. Thus, it appears that cocaine-induced alterations in OT system dynamics (levels, receptors, production, and/or release) may mediate heightened maternal aggression following cocaine treatment, but the exact mechanisms through which cocaine impacts the OT system have not yet been determined. Based on previous studies, we hypothesized that two likely mechanisms of cocaines action would be, increased OTR binding specifically in the CeA, and decreased OT mRNA production in the PVN. Autoradiography and in situ hybridization assays were performed on targeted nuclei in brain regions of rat dams on postpartum day six, following gestational treatment twice daily with cocaine (15 mg/kg) or normal saline (1 ml/kg). We now report cocaine-induced reductions in OTR binding density in the ventromedial hypothalamus (VMH) and bed nucleus of the stria terminalis (BNST), but not the CeA. There was no significant change in OT mRNA production in the PVN following cocaine treatment.


Neurotoxicology and Teratology | 2008

Gestational ethanol and nicotine exposure: effects on maternal behavior, oxytocin, and offspring ethanol intake in the rat.

Matthew S. McMurray; Sarah K. Williams; Thomas M. Jarrett; Elizabeth Cox; Emily Fay; David H. Overstreet; Cheryl H. Walker; Josephine M. Johns

Alcohol consumption and smoking during pregnancy is common, despite the known adverse effects of these drugs on fetal development. Though studies on the effects of each drug separately are published, little is known about the effect of concurrent use of alcohol and nicotine in humans or in preclinical models. In this report, we examined the impact of continuous gestational exposure to both ethanol via liquid diet and nicotine via an osmotic minipump on maternal behavior, offspring ethanol intake, and oxytocin levels in a rat model. Dams were tested for the onset of maternal behavior with litters of unexposed surrogate pups and then killed to examine oxytocin levels within specific brain regions. Drug-exposed offspring reared by surrogate dams were tested for ethanol intake at either adolescence or adulthood, and oxytocin levels were measured in relevant brain regions after behavioral tests. Dams exhibited minor deficits in maternal care, which were associated with lower oxytocin levels in both the ventral tegmental and medial preoptic areas compared to control dams. Prenatal exposure altered sex-specific ethanol intake, with differential effects at adolescence and adulthood. Oxytocin system changes were also apparent in the ventral tegmental and medial preoptic regions of drug-exposed adolescent and adult offspring. These results suggest that dam treatment with ethanol and nicotine can somewhat negatively affect the early rearing environment, and that prenatal exposure to both of these drugs results in drinking behavior differing from what would be expected from either drug alone. Oxytocins possible involvement in the mediation of these effects is highlighted.


Neurotoxicology and Teratology | 2009

Simultaneous prenatal ethanol and nicotine exposure affect ethanol consumption, ethanol preference and oxytocin receptor binding in adolescent and adult rats.

Sarah K. Williams; Elizabeth Cox; Matthew S. McMurray; Emily Fay; Thomas M. Jarrett; Cheryl H. Walker; David H. Overstreet; Josephine M. Johns

Ethanol consumption and smoking during pregnancy are common, despite the known adverse effects on the fetus. The teratogenicity of each drug independently is well established; however, the effects of concurrent exposure to ethanol and nicotine in preclinical models remain unclear. This study examined the impact of simultaneous prenatal exposure to both ethanol and nicotine on offspring ethanol preference behaviors and oxytocin system dynamics. Rat dams were given liquid diet (17% ethanol derived calories (EDC)) on gestational day (GD) 5 and 35% EDC from GD 6-20 and concurrently an osmotic minipump delivered nicotine (3-6mg/kg/day) from GD 4-postpartum day 10. Offspring were tested for ethanol preference during adolescence (postnatal day (PND) 30-43) and again at adulthood (PND 60-73), followed by assays for oxytocin mRNA expression and receptor binding in relevant brain regions. Prenatal exposure decreased ethanol preference in males during adolescence, and decreased consumption and preference in females during adulthood compared to controls. Oxytocin receptor binding in the nucleus accumbens and hippocampus was increased in adult prenatally exposed males only. Prenatal exposure to these drugs sex-specifically decreased ethanol preference behavior in offspring unlike reports for either drug separately. The possible role of oxytocin in reduction of ethanol consumption behavior is highlighted.


Neuropeptides | 2008

Impact of gestational cocaine treatment or prenatal cocaine exposure on early postpartum oxytocin mRNA levels and receptor binding in the rat

Matthew S. McMurray; Elizabeth Cox; Thomas M. Jarrett; Sarah K. Williams; Cheryl H. Walker; Josephine M. Johns

Prior research reported decreased oxytocin levels in specific brain regions correlated with disruptions in maternal care following gestational cocaine treatment in rats. Similarly, prenatal exposure to cocaine impaired subsequent maternal behavior in adulthood, but behavioral alterations were not associated with decreases in oxytocin levels in the same brain regions as were found in their cocaine-treated rat dams. To determine if other aspects of the oxytocin system are disrupted by cocaine treatment or prenatal exposure to cocaine during critical time points associated with maternal care, oxytocin mRNA transcription and receptor binding were examined on postpartum day two in relevant brain regions following gestational treatment with, or prenatal exposure to, either cocaine or saline. We hypothesized that oxytocin mRNA levels and receptor binding would be differentially affected by cocaine in the early postpartum period of dams and their offspring. Our findings indicate that gestational cocaine treatment resulted in significant increases in oxytocin mRNA levels in only the paraventricular nucleus of cocaine-treated dams, with almost significant increases in both generations in the supraoptic nucleus, but no significant effects of cocaine on receptor binding in either generation of dams. These findings indicate that in addition to oxytocin levels, cocaine treatment or prenatal exposure primarily affects oxytocin mRNA synthesis, with little effect on receptor binding in specific brain regions associated with maternal behavior in the early postpartum period of the rat.


Brain Research | 2012

Orexin-1 receptor antagonism does not reduce the rewarding potency of cocaine in Swiss-Webster mice

Thorfinn T. Riday; Eric W. Fish; J. Elliott Robinson; Thomas M. Jarrett; Megan M. McGuigan; C. J. Malanga

The orexin family of hypothalamic neuropeptides has been implicated in reinforcement mechanisms relevant to both food and drug reward. Previous behavioral studies with antagonists at the orexin A-selective receptor, OX(1), have demonstrated its involvement in behavioral sensitization, conditioned place-preference, and self-administration of drugs of abuse. Adult male Swiss-Webster mice were implanted with stimulating electrodes to the lateral hypothalamus and trained to perform intracranial self-stimulation (ICSS). The effects of the OX(1)-selective antagonist SB 334867 on brain stimulation-reward (BSR) and cocaine potentiation of BSR were measured. SB 334867 (10-30mg/kg, i.p.) alone had no effect on ICSS performance or BSR threshold. Cocaine (1.0-30mg/kgi.p.) dose-dependently potentiated BSR, measured as lowering of BSR threshold. This effect was not blocked by 30mg/kg SB 334867 at any cocaine dose tested. In agreement with previous reports, SB 334867 resulted in a reduction of body weight 24h after acute administration. Based on these data, it is concluded that orexins acting at OX(1) do not contribute to BSR; and are not involved in the reward-potentiating actions of cocaine on BSR. The data are discussed in the context of prior findings of SB 334867 effects on drug-seeking and drug-consuming behaviors.


Behavioural Brain Research | 2015

Early postpartum pup preference is altered by gestational cocaine treatment: associations with infant cues and oxytocin expression in the MPOA.

E.T. Cox Lippard; Thomas M. Jarrett; Matthew S. McMurray; Philip Sanford Zeskind; Kristin Ann Garber; C.R. Zoghby; K. Glaze; W. Tate; Josephine M. Johns

Cross-fostering studies suggest cocaine-induced deficits in maternal behavior could be associated with altered behavior of offspring following prenatal cocaine-exposure. Neonatal vocalizations are an important offspring cue facilitating early interactions between dam and rodent pup offspring and have been shown to be altered following prenatal cocaine-exposure. It is unclear how variations in acoustic parameters of USVs impact maternal behavior and the mechanism(s) underlying these processes. The present study examined differences in cocaine-exposed and control rodent dam maternal preference of cocaine-exposed or untreated pups in a dual choice apparatus. Relationship of preference-like behavior with pup USVs and dam oxytocin expression was explored. Gestational cocaine-exposure interfered with preference-like behavior of dams on postpartum day 1 with cocaine-exposure associated with decreased time spent on the cocaine-exposed pup side compared to the control pup side, and decreases in preference-like behavior associated in part with decreased number of USVs being emitted by cocaine-exposed pups. On postpartum day 5, decreased oxytocin expression in the medial preoptic area was associated with altered preference-like behavior in cocaine-exposed dams, including frequency and latency to touch/sniff pups. Results indicate cocaines effects on the mother-infant relationship is likely synergistic, in that cocaine influences mother and offspring both independently and concertedly and that variations within pup vocalizations and the oxytocin system may be potential mechanism(s) underlying this synergistic relationship during the postpartum period.


Frontiers in Psychiatry | 2011

Combined norepinephrine/serotonergic reuptake inhibition: effects on maternal behavior, aggression, and oxytocin in the rat.

Elizabeth Cox; Thomas M. Jarrett; Matthew S. McMurray; Kevin Greenhill; Vivian E. Hofler; Sarah K. Williams; Paul W. Joyner; Christopher L. Middleton; Cheryl H. Walker; Josephine M. Johns

Background: Few systematic studies exist on the effects of chronic reuptake of monoamine neurotransmitter systems during pregnancy on the regulation of maternal behavior (MB), although many drugs act primarily through one or more of these systems. Previous studies examining fluoxetine and amfonelic acid treatment during gestation on subsequent MB in rodents indicated significant alterations in postpartum maternal care, aggression, and oxytocin levels. In this study, we extended our studies to include chronic gestational treatment with desipramine or amitriptyline to examine differential effects of reuptake inhibition of norepinephrine and combined noradrenergic and serotonergic systems on MB, aggression, and oxytocin system changes. Methods: Pregnant Sprague-Dawley rats were treated throughout gestation with saline or one of three doses of either desipramine, which has a high affinity for the norepinephrine monoamine transporter, or amitriptyline, an agent with high affinity for both the norepinephrine and serotonin monoamine transporters. MB and postpartum aggression were assessed on postpartum days 1 and 6 respectively. Oxytocin levels were measured in relevant brain regions on postpartum day 7. Predictions were that amitriptyline would decrease MB and increase aggression relative to desipramine, particularly at higher doses. Amygdaloidal oxytocin was expected to decrease with increased aggression. Results: Amitriptyline and desipramine differentially reduced MB, and at higher doses reduced aggressive behavior. Hippocampal oxytocin levels were lower after treatment with either drug but were not correlated with specific behavioral effects. These results, in combination with previous findings following gestational treatment with other selective neurotransmitter reuptake inhibitors, highlight the diverse effects of multiple monoamine systems thought to be involved in maternal care.


Frontiers in Psychiatry | 2011

Cocaine Exposure and Children's Self-Regulation: Indirect Association via Maternal Harshness

Rina D. Eiden; Pamela Schuetze; Yvette Veira; Elizabeth Cox; Thomas M. Jarrett; Josephine M. Johns

Objectives: This study examined the association between prenatal cocaine exposure and children’s self-regulation at 3 years of child age. In addition to direct effects of prenatal cocaine exposure on children’s self-regulation, we hypothesized there would be indirect associations between cocaine exposure and self-regulation via higher maternal harshness and poor autonomic regulation in infancy. Methods: The sample consisted of 216 mother–infant dyads recruited at delivery from local area hospitals (116 cocaine-exposed, 100 non-exposed). Infant autonomic regulation was measured at 7 months of age during an anger/frustration task, maternal harshness was coded from observations of mother–toddler interactions at 2 years of age, and children’s self-regulation was measured at 3 years of age using several laboratory paradigms. Results: Contrary to hypotheses, there were no direct associations between maternal cocaine use during pregnancy and children’s self-regulation. However, results from testing our conceptual model including the indirect effects via maternal harshness or infant parasympathetic regulation indicated that this model fit the data well, χ2 (23) = 34.36, p > 0.05, Comparative Fit Index = 0.95, RMSEA = 0.05. Cocaine using mothers displayed higher intensity of harshness toward their toddlers during lab interactions across a variety of tasks at 2 years of age (β = 0.23, p < 0.05), and higher intensity of harshness at 2 years was predictive of lower self-regulation at 3 years (β = −0.36, p < 0.01). Maternal cocaine use was also predictive of a non-adaptive increase in respiratory sinus arrhythmia (RSA) from baseline to the negative affect task, but RSA change in infancy was not predictive of self-regulation at 3 years. Conclusion: Results are supportive of animal models indicating higher aggression among cocaine treated dams, and indicate that higher maternal harshness among cocaine using mothers is predictive of child self-regulatory outcomes in the preschool period.

Collaboration


Dive into the Thomas M. Jarrett's collaboration.

Top Co-Authors

Avatar

Josephine M. Johns

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Matthew S. McMurray

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Cheryl H. Walker

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Elizabeth Cox

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Sarah K. Williams

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul W. Joyner

University of Connecticut

View shared research outputs
Top Co-Authors

Avatar

Vivian E. Hofler

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Amber M. Haslup

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

David H. Overstreet

University of North Carolina at Chapel Hill

View shared research outputs
Researchain Logo
Decentralizing Knowledge