Thomas M. Lewinsohn
State University of Campinas
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Thomas M. Lewinsohn.
Ecology Letters | 2008
Thomas M. Lewinsohn; Tomas Roslin
Most multicellular species alive are tropical arthropods associated with plants. Hence, the host-specificity of these species, and their diversity at different scales, are keys to understanding the assembly structure of global biodiversity. We present a comprehensive scheme in which tropical herbivore megadiversity can be partitioned into the following components: (A) more host plant species per se, (B) more arthropod species per plant species, (C) higher host specificity of herbivores, or (D) higher species turnover (beta diversity) in the tropics than in the temperate zone. We scrutinize recent studies addressing each component and identify methodological differences among them. We find substantial support for the importance of component A, more tropical host species. A meta-analysis of published results reveals intermediate to high correlations between plant and herbivore diversity, accounting for up to 60% of the variation in insect species richness. Support for other factors is mixed, with studies too scarce and approaches too uneven to allow for quantitative summaries. More research on individual components is unlikely to resolve their relative contribution to overall herbivore diversity. Instead, we call for the adoption of more coherent methods that avoid pitfalls for larger-scale comparisons, for studies assessing different components together rather than singly, and for studies that investigate herbivore beta-diversity (component D) in a more comprehensive perspective.
Chemoecology | 1991
Thomas M. Lewinsohn
SummaryLatex is a widespread defence in plants against natural enemies and a literature-based summary of latex-producing angiosperms shows records in 40 families, and more than 20,000 species are estimated to bear laticiferous structures of some kind. This is considerably higher than the usually quoted figure of 12,500 species. There are more tropical than temperate latex-bearing families, both in absolute numbers and proportionally. Proportions of latex-bearing families are similar both in tropical and in more widespread or cosmopolitan families. Significantly more latex-bearing species belong to tropical than either to temperate or to widespread taxa, both in absolute and in relative terms. These differences may be related to the higher diversity of natural enemy species and to higher rates of herbivory in the tropics.
The American Naturalist | 1995
Susan Harrison; Chris D. Thomas; Thomas M. Lewinsohn
We tested a metapopulation model of coexistence for the insect herbivores of ragwort. Previous research suggested that some of them survive the intense but patchy defoliation of ragwort by the cinnabar moth (Tyria jacobaeae) by continually colonizing new patches of ragwort. We confirmed prior findings of strong asymmetric competition among these insects. However, we found that all insects, including the cinnabar moth, readily colonized experimental patches up to 380 m from a source. In our study system (60 ragwort patches in a 1.3-km2 area), median and maximum distances between natural patches were 20 m and 85 m, respectively. Because of the high level of dispersal relative to interpatch distances, a metapopulation model is unlikely to apply in this system. We propose other means of coexistence and suggest that metapopulation hypotheses require more critical examination than they have been given.
PLOS ONE | 2008
Rafael D. Loyola; Carlos Guilherme Becker; Umberto Kubota; Célio F. B. Haddad; Carlos Roberto Fonseca; Thomas M. Lewinsohn
Background In the Neotropics, nearly 35% of amphibian species are threatened by habitat loss, habitat fragmentation, and habitat split; anuran species with different developmental modes respond to habitat disturbance in different ways. This entails broad-scale strategies for conserving biodiversity and advocates for the identification of high conservation-value regions that are significant in a global or continental context and that could underpin more detailed conservation assessments towards such areas. Methodology/Principal Findings We identified key ecoregion sets for anuran conservation using an algorithm that favors complementarity (beta-diversity) among ecoregions. Using the WWFs Wildfinder database, which encompasses 700 threatened anuran species in 119 Neotropical ecoregions, we separated species into those with aquatic larvae (AL) or terrestrial development (TD), as this life-history trait affects their response to habitat disturbance. The conservation target of 100% of species representation was attained with a set of 66 ecoregions. Among these, 30 were classified as priority both for species with AL and TD, 26 were priority exclusively for species with AL, and 10 for species with TD only. Priority ecoregions for both developmental modes are concentrated in the Andes and in Mesoamerica. Ecoregions important for conserving species with AL are widely distributed across the Neotropics. When anuran life histories were ignored, species with AL were always underrepresented in priority sets. Conclusions/Significance The inclusion of anuran developmental modes in prioritization analyses resulted in more comprehensive coverage of priority ecoregions–especially those essential for species that require an aquatic habitat for their reproduction–when compared to usual analyses that do not consider this life-history trait. This is the first appraisal of the most important regions for conservation of threatened Neotropical anurans. It is also a first endeavor including anuran life-history traits in priority area-selection for conservation, with a clear gain in comprehensiveness of the selection process.
Nature | 2016
Martin M. Gossner; Thomas M. Lewinsohn; Tiemo Kahl; Fabrice Grassein; Steffen Boch; Daniel Prati; Klaus Birkhofer; Swen C. Renner; Johannes Sikorski; Tesfaye Wubet; Hartmut Arndt; Vanessa Baumgartner; Stefan Blaser; Nico Blüthgen; Carmen Börschig; François Buscot; Tim Diekötter; Leonardo R. Jorge; Kirsten Jung; Alexander C. Keyel; Alexandra-Maria Klein; Sandra Klemmer; Jochen Krauss; Markus Lange; Jörg Müller; Jörg Overmann; Esther Pašalić; Caterina Penone; David J. Perović; Oliver Purschke
Land-use intensification is a major driver of biodiversity loss. Alongside reductions in local species diversity, biotic homogenization at larger spatial scales is of great concern for conservation. Biotic homogenization means a decrease in β-diversity (the compositional dissimilarity between sites). Most studies have investigated losses in local (α)-diversity and neglected biodiversity loss at larger spatial scales. Studies addressing β-diversity have focused on single or a few organism groups (for example, ref. 4), and it is thus unknown whether land-use intensification homogenizes communities at different trophic levels, above- and belowground. Here we show that even moderate increases in local land-use intensity (LUI) cause biotic homogenization across microbial, plant and animal groups, both above- and belowground, and that this is largely independent of changes in α-diversity. We analysed a unique grassland biodiversity dataset, with abundances of more than 4,000 species belonging to 12 trophic groups. LUI, and, in particular, high mowing intensity, had consistent effects on β-diversity across groups, causing a homogenization of soil microbial, fungal pathogen, plant and arthropod communities. These effects were nonlinear and the strongest declines in β-diversity occurred in the transition from extensively managed to intermediate intensity grassland. LUI tended to reduce local α-diversity in aboveground groups, whereas the α-diversity increased in belowground groups. Correlations between the β-diversity of different groups, particularly between plants and their consumers, became weaker at high LUI. This suggests a loss of specialist species and is further evidence for biotic homogenization. The consistently negative effects of LUI on landscape-scale biodiversity underscore the high value of extensively managed grasslands for conserving multitrophic biodiversity and ecosystem service provision. Indeed, biotic homogenization rather than local diversity loss could prove to be the most substantial consequence of land-use intensification.
Ecological Entomology | 1984
João Vasconcellos-Neto; Thomas M. Lewinsohn
Abstract. 1. Nephila clavipes (L.), a common spider in neotropical forests, discriminates some unpalatable prey and releases them unharmed from its web. Release is not accidental but results from a specific behavioural sequence.
PLOS ONE | 2015
Yves Basset; Lukas Cizek; Philippe Cuénoud; Raphael K. Didham; Vojtech Novotny; Frode Ødegaard; Tomas Roslin; Alexey K. Tishechkin; Juergen Schmidl; Neville N. Winchester; David W. Roubik; Henri-Pierre Aberlenc; Johannes Bail; Héctor Barrios; Jonathan R. Bridle; Bruno Corbara; Gianfranco Curletti; Wesley Duarte da Rocha; Domir De Bakker; Jacques Hubert Charles Delabie; Alain Dejean; Laura L. Fagan; Andreas Floren; Roger Kitching; Enrique Medianero; Evandro Gama de Oliveira; Jérôme Orivel; Marc Pollet; Mathieu Rapp; Sérvio P. Ribeiro
Quantifying the spatio-temporal distribution of arthropods in tropical rainforests represents a first step towards scrutinizing the global distribution of biodiversity on Earth. To date most studies have focused on narrow taxonomic groups or lack a design that allows partitioning of the components of diversity. Here, we consider an exceptionally large dataset (113,952 individuals representing 5,858 species), obtained from the San Lorenzo forest in Panama, where the phylogenetic breadth of arthropod taxa was surveyed using 14 protocols targeting the soil, litter, understory, lower and upper canopy habitats, replicated across seasons in 2003 and 2004. This dataset is used to explore the relative influence of horizontal, vertical and seasonal drivers of arthropod distribution in this forest. We considered arthropod abundance, observed and estimated species richness, additive decomposition of species richness, multiplicative partitioning of species diversity, variation in species composition, species turnover and guild structure as components of diversity. At the scale of our study (2km of distance, 40m in height and 400 days), the effects related to the vertical and seasonal dimensions were most important. Most adult arthropods were collected from the soil/litter or the upper canopy and species richness was highest in the canopy. We compared the distribution of arthropods and trees within our study system. Effects related to the seasonal dimension were stronger for arthropods than for trees. We conclude that: (1) models of beta diversity developed for tropical trees are unlikely to be applicable to tropical arthropods; (2) it is imperative that estimates of global biodiversity derived from mass collecting of arthropods in tropical rainforests embrace the strong vertical and seasonal partitioning observed here; and (3) given the high species turnover observed between seasons, global climate change may have severe consequences for rainforest arthropods.
PLOS ONE | 2009
Rafael Loyola; Luiz Gustavo Rodrigues Oliveira-Santos; Mário Almeida-Neto; Denise Martins Nogueira; Umberto Kubota; José Alexandre Felizola Diniz-Filho; Thomas M. Lewinsohn
Background Prioritization schemes usually highlight species-rich areas, where many species are at imminent risk of extinction. To be ecologically relevant these schemes should also include species biological traits into area-setting methods. Furthermore, in a world of limited funds for conservation, conservation action is constrained by land acquisition costs. Hence, including economic costs into conservation priorities can substantially improve their conservation cost-effectiveness. Methodology/Principal Findings We examined four global conservation scenarios for carnivores based on the joint mapping of economic costs and species biological traits. These scenarios identify the most cost-effective priority sets of ecoregions, indicating best investment opportunities for safeguarding every carnivore species, and also establish priority sets that can maximize species representation in areas harboring highly vulnerable species. We compared these results with a scenario that minimizes the total number of ecoregions required for conserving all species, irrespective of other factors. We found that cost-effective conservation investments should focus on 41 ecoregions highlighted in the scenario that consider simultaneously both ecoregion vulnerability and economic costs of land acquisition. Ecoregions included in priority sets under these criteria should yield best returns of investments since they harbor species with high extinction risk and have lower mean land cost. Conclusions/Significance Our study highlights ecoregions of particular importance for the conservation of the worlds carnivores defining global conservation priorities in analyses that encompass socioeconomic and life-history factors. We consider the identification of a comprehensive priority-set of areas as a first step towards an in-situ biodiversity maintenance strategy.
Ecological Entomology | 2005
Carlos Roberto Fonseca; Paulo Inácio Prado; Mário Almeida-Neto; Umberto Kubota; Thomas M. Lewinsohn
Abstract. 1. The ways in which a soil fertility gradient affects three trophic level food webs defined by plants of the family Asteraceae, flower‐head herbivores, and their parasitoids was investigated. It was tested how the fertility gradient alters: (i) the abundance and richness of plants, herbivores, and their parasitoids, (ii) the herbivore–plant ratio, and (iii) the connectance of the plant–herbivore community matrix.
Biodiversity and Conservation | 2009
Rafael D. Loyola; Umberto Kubota; Gustavo A. B. da Fonseca; Thomas M. Lewinsohn
Conservation planning analyses show a striking progression from endeavors targeted at single species or at individual sites, to the systematic assessment of entire taxa at large scales. These, in turn, inform wide-reaching conservation policies and financial investments. The latter are epitomized by global-scale prioritization frameworks, such as the Biodiversity Hotspots. We examine the entire Neotropical region to identify sets of areas of high conservation priority according to terrestrial vertebrate distribution patterns. We identified a set of 49 ecoregions in which 90, 82 and 83%, respectively of total, endemic and threatened vertebrates are represented. A core subset of 11 ecoregions captured 55, 27 and 38% of these groups. The Neotropics hold the largest remaining wilderness areas in the world, and encompass most of the tropical ecosystems still offering significant options for successful broad-scale conservation action. Our analysis helps to elucidate where conservation is likely to yield best returns at the ecoregion scale.