Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thomas M. Mitchell is active.

Publication


Featured researches published by Thomas M. Mitchell.


Journal of Geophysical Research | 2011

Scaling of fault damage zones with displacement and the implications for fault growth processes

D. R. Faulkner; Thomas M. Mitchell; E. Jensen; José Cembrano

[1] Knowledge of the spatial extent of damage surrounding fault zones is important for understanding crustal fluid flow and also for understanding the physical processes and mechanics by which fault zones develop with slip. There are few data available on the scaling of the fault damage zone with fault displacement, and of those that exist, deriving scaling relationships is hampered by comparing faults that run through different lithologies, have formed at different crustal depths or tectonic regimes (e.g., normal versus strike‐slip movement). We describe new data on the microfracture damage zone width from small displacement fault zones within the Atacama fault zone in northern Chile that formed at ∼6 km depth within a dioritic protolith. The microfracture damage zone is shown by an alteration halo surrounding the faults in which the density of the microfractures is much greater than background levels in the undeformed protolith. The data show that damage zone width increases with fault displacement and there appears to be a zero intercept to this relationship, meaning that at zero displacement, there is no microfracture damage zone. This is supported by field observations at fault tips that show a tapering out of fault damage zones. These data, combined with data from the literature, indicate that this same relationship might hold for much larger displacement faults. There is also a distinct asymmetry to the fracture damage. Several processes for the development of the observed scaling are discussed. The widely accepted theory of a process zone predicts that fault damage zone width increases with fault length and thus should always be largest at a propagating fault tip where displacement is lowest. This prediction is opposite to that seen in the current data set, leading to suggestion that other processes, such as damage zone growth with increasing displacement due to geometric irregularities or coseismic damage formation might better explain the spatial extent of damage surrounding even low‐displacement faults.


Journal of Geophysical Research | 2014

Dynamic weakening of serpentinite gouges and bare surfaces at seismic slip rates

Brooks Proctor; Thomas M. Mitchell; Greg Hirth; David L. Goldsby; Federico Zorzi; John D. Platt; G. Di Toro

To investigate differences in the frictional behavior between initially bare rock surfaces of serpentinite and powdered serpentinite (“gouge”) at subseismic to seismic slip rates, we conducted single-velocity step and multiple-velocity step friction experiments on an antigorite-rich and lizardite-rich serpentinite at slip rates (V) from 0.003 m/s to 6.5 m/s, sliding displacements up to 1.6 m, and normal stresses (σn) up to 22 MPa for gouge and 97 MPa for bare surfaces. Nominal steady state friction values (μnss) in gouge at V = 1 m/s are larger than in bare surfaces for all σn tested and demonstrate a strong σn dependence; μnss decreased from 0.51 at 4.0 MPa to 0.39 at 22.4 MPa. Conversely, μnss values for bare surfaces remained ∼0.1 with increasing σn and V. Additionally, the velocity at the onset of frictional weakening and the amount of slip prior to weakening were orders of magnitude larger in gouge than in bare surfaces. Extrapolation of the normal stress dependence for μnss suggests that the behavior of antigorite gouge approaches that of bare surfaces at σn ≥ 60 MPa. X-ray diffraction revealed dehydration reaction products in samples that frictionally weakened. Microstructural analysis revealed highly localized slip zones with melt-like textures in some cases gouge experiments and in all bare surfaces experiments for V ≥ 1 m/s. One-dimensional thermal modeling indicates that flash heating causes frictional weakening in both bare surfaces and gouge. Friction values for gouge decrease at higher velocities and after longer displacements than bare surfaces because strain is more distributed. Key Points Gouge friction approaches that of bare surfaces at high normal stress Dehydration reactions and bulk melting in serpentinite in < 1 m of slip Flash heating causes dynamic frictional weakening in gouge and bare surfaces


Geological Society, London, Special Publications | 2008

On the structure and mechanical properties of large strike-slip faults

D. R. Faulkner; Thomas M. Mitchell; E. H. Rutter; José Cembrano

Abstract Elucidation of the internal structure of fault zones is paramount for understanding their mechanical, seismological and hydraulic properties. In order to observe representative brittle fault zone structures, it is preferable that the fault be passively exhumed from seismogenic depths and the exposure must be in arid or semi-arid environments where the fragile rocks are not subject to extensive weathering. Field observations of two such faults are used to constrain their likely mechanical properties. One fault is the Carboneras fault in southeastern Spain, where the predominant country rocks are phyllosilicate-rich lithologies, and the other is part of the Atacama fault system in northern Chile, where faults pass through crystalline rocks of acidic to intermediate composition. The Carboneras fault is a left lateral fault with several tens of kilometres offset exhumed from approximately 4 km depth, and displays multiple strands of clay-bearing fault gouge, each several metres wide, that contain variably fractured lenses of protolithic mica schists. The strain is evenly distributed across the gouge layers, in accordance with the measured laboratory mechanical behaviour which shows predominantly strain hardening characteristics. The overall width of the fault zone is several hundred metres. Additionally, there are blocks of dolomitic material that are contained within the fault zones that show extremely localized deformation in the form of faults several centimetres wide. These are typically arranged at an angle of c. 20° to the overall fault plane. These differing types of fault rock products allow for the possibility of ‘mixed mode’ seismicity, with fault creep occurring along the strands of velocity strengthening clay-rich gouge, punctuated by small seismic events that nucleate on the velocity weakening localized faults within the dolomite blocks. The Caleta Coloso fault in northern Chile has a left-lateral offset of at least 5 km and was exhumed from 5–10 km depth. The fault core is represented by a 200–300 m wide zone of hydrothermally altered protocataclasite and ultracataclasite. This is surrounded by a zone of micro and macro-fractures on the order of 150 m thick. The fault core shows a heterogeneous distribution of strain, with alternate layers of ultracataclasite and lower strain material. The strain-weakening behaviour of crystalline rocks might be expected to produce highly localized zones of deformation, and thus the wide core zone must be a result of additional process such as precipitation strengthening or geometric irregularities along the fault plane.


Journal of Geophysical Research | 2016

Dynamic fracturing by successive coseismic loadings leads to pulverization in active fault zones

F. M. Aben; Mai-Linh Doan; Thomas M. Mitchell; Renaud Toussaint; Thierry Reuschlé; M. Fondriest; Jean-Pierre Gratier; François Renard

Previous studies show that pulverized rocks observed along large faults can be created by single high-strain rate loadings in the laboratory, provided that the strain rate is higher than a certain pulverization threshold. Such loadings are analogous to large seismic events. In reality, pulverized rocks have been subject to numerous seismic events rather than one single event. Therefore, the effect of successive “milder” high-strain rate loadings on the pulverization threshold is investigated by applying loading conditions below the initial pulverization threshold. Single and successive loading experiments were performed on quartz-monzonite using a Split Hopkinson Pressure Bar apparatus. Damage-dependent petrophysical properties and elastic moduli were monitored by applying incremental strains. Furthermore, it is shown that the pulverization threshold can be reduced by successive “milder” dynamic loadings from strain rates of ~180 s−1 to ~90 s−1. To do so, it is imperative that the rock experiences dynamic fracturing during the successive loadings prior to pulverization. Combined with loading conditions during an earthquake rupture event, the following generalized fault damage zone structure perpendicular to the fault will develop: furthest from the fault plane, there is a stationary outer boundary that bounds a zone of dynamically fractured rocks. Closer to the fault, a pulverization boundary delimits a band of pulverized rock. Consecutive seismic events will cause progressive broadening of the band of pulverized rocks, eventually creating a wider damage zone observed in mature faults.


Geology | 2016

Fault welding by pseudotachylyte formation

Thomas M. Mitchell; Virginia G. Toy; Giulio Di Toro; Jörg Renner; Richard H. Sibson

During earthquakes, melt produced by frictional heating can accumulate on slip surfaces and dramatically weaken faults by melt lubrication. Once seismic slip slows and arrests, the melt cools and solidifies to form pseudotachylytes, the presence of which is commonly used by geologists to infer earthquake slip on exhumed ancient faults. Field evidence suggests that solidified melts may weld seismic faults, resulting in subsequent seismic ruptures propagating on neighboring pseudotachylyte-free faults or joints and thus leading to long-term fault slip delocalization for successive ruptures. We performed triaxial deformation experiments on natural pseudotachylyte-bearing rocks, and show that cooled frictional melt effectively welds fault surfaces together and gives faults cohesive strength comparable to that of an intact rock. Consistent with the field-based speculations, further shear is not favored on the same slip surface, but subsequent failure is accommodated on a new subparallel fault forming on an off-fault preexisting heterogeneity. A simple model of the temperature distribution in and around a pseudotachylyte following slip cessation indicates that frictional melts cool to below their solidus in tens of seconds, implying strength recovery over a similar time scale.


Geochemistry Geophysics Geosystems | 2015

Crystallographic preferred orientations may develop in nanocrystalline materials on fault planes due to surface energy interactions

Virginia G. Toy; Thomas M. Mitchell; Anthony Druiventak; Richard Wirth

A layer of substantially noncrystalline material, composed of partially annealed nanopowder with local melt, was experimentally generated by comminution during ∼1.5 mm total slip at ∼2.5 × 10−6 m s−1, Pconf ∼ 0.5 GPa, and 450°C or 600°C, on saw cut surfaces in novaculite. The partially annealed nanopowder comprises angular grains mostly 5–200 nm diameter in a variably dense packing arrangement. A sharp transition from wall rock to partially annealed nanopowder illustrates that the nanopowder effectively localizes shear, consistent with generation of nanoparticles during initial fragmentation, not by progressive grain size reduction. Dislocation densities in nanopowder grains or immediate wall rock are not significantly high, but there are planar plastic defects spaced at 5–200 nm parallel to the host quartz grains basal plane. We propose these plastic defects developed into through-going fractures to generate nanocrystals. The partially annealed nanopowder has a crystallographic preferred orientation (CPO) that we hypothesize developed due to surface energy interactions to maximize coincident site lattices (CSL) during annealing. This mechanism may also have generated CPOs recently described in micro/nanocrystalline calcite fault gouges.


Journal of Geophysical Research | 2016

Influence of gouge thickness and grain size on permeability of macrofractured basalt

G. Wang; Thomas M. Mitchell; Philip George Meredith; Yoshitaka Nara; Z. Wu

Fractures allow crystalline rocks to store and transport fluids, but fracture permeability can also be influenced significantly by the existence or absence of gouge and by stress history. To investigate these issues, we measured the water permeability of macrofractured basalt samples unfilled or infilled with gouge of different grain sizes and thicknesses as a function of hydrostatic stress and also under cyclic stress conditions. In all experiments, permeability decreased with increasing effective pressure, but unfilled fractures exhibited a much greater decrease than gouge-filled fractures. Macrofractures filled with fine-grained gouge had the lowest permeabilities and exhibited the smallest change with pressure. By contrast, the permeability changed significantly more in fractures filled with coarser-grained gouge. During cyclic pressurization, permeability decreased with increasing cycle number until reaching a minimum value after a certain number of cycles. Permeability reduction in unfilled fractures is accommodated by both elastic and inelastic deformation of surface asperities, while measurements of the particle size distribution and compaction in gouge-filled fractures indicate only inelastic compaction. In fine-grained gouge this is accommodated by grain rearrangement, while in coarser-grained gouge it is the result of both grain rearrangement and comminution. Overall, sample permeability is dominated by the gouge permeability, which decreases with increasing thickness and is also sensitive to the grain size and its distribution. Our results imply that there is a crossover depth in the crust below which the permeability of well-mated fractures (e.g., joints) becomes lower than that of gouge-filled fractures (e.g., shear faults).


Scientific Reports | 2017

Quantifying the anisotropy and tortuosity of permeable pathways in clay-rich mudstones using models based on X-ray tomography.

Nils R. Backeberg; Francesco Iacoviello; Martin Rittner; Thomas M. Mitchell; Ap Jones; Richard Day; John Wheeler; Paul R. Shearing; Pieter Vermeesch; Alberto Striolo

The permeability of shales is important, because it controls where oil and gas resources can migrate to and where in the Earth hydrocarbons are ultimately stored. Shales have a well-known anisotropic directional permeability that is inherited from the depositional layering of sedimentary laminations, where the highest permeability is measured parallel to laminations and the lowest permeability is perpendicular to laminations. We combine state of the art laboratory permeability experiments with high-resolution X-ray computed tomography and for the first time can quantify the three-dimensional interconnected pathways through a rock that define the anisotropic behaviour of shales. Experiments record a physical anisotropy in permeability of one to two orders of magnitude. Two- and three-dimensional analyses of micro- and nano-scale X-ray computed tomography illuminate the interconnected pathways through the porous/permeable phases in shales. The tortuosity factor quantifies the apparent decrease in diffusive transport resulting from convolutions of the flow paths through porous media and predicts that the directional anisotropy is fundamentally controlled by the bulk rock mineral geometry. Understanding the mineral-scale control on permeability will allow for better estimations of the extent of recoverable reserves in shale gas plays globally.


Journal of Geophysical Research | 2017

Insights into anisotropy development and weakening of ice from in situ P wave velocity monitoring during laboratory creep

M. J. Vaughan; David J. Prior; M. Jefferd; Nicolas Brantut; Thomas M. Mitchell; M. Seidemann

Polycrystalline ice weakens significantly after a few percent strain, during high homologous temperature deformation. Weakening is correlated broadly with the development of a crystallographic preferred orientation (CPO). We deformed synthetic polycrystalline ice at -5°C under uniaxial compression, while measuring ultrasonic P wave velocities along several raypaths through the sample. Changes in measured P wave velocities (V p ) and in the velocities calculated from microstructural measurements of CPO (by cryo-electron backscatter diffraction) both show that velocities along trajectories parallel and perpendicular to shortening decrease with increasing strain, while velocities on diagonal trajectories increase. Thus, in these experiments, velocity data provide a continuous measurement of CPO evolution in creeping ice. Samples reach peak stresses after 1% shortening. Weakening corresponds to the start of CPO development, as indicated by divergence of P wave velocity changes for different raypaths, and initiates at ≈3% shortening. Selective growth by strain-induced grain boundary migration (GBM) of grains favorably oriented for basal slip may initiate weakening through the formation of an interconnected network of these grains by 3% shortening. After weakening initiates, CPO continues to develop by GBM and nucleation processes. The resultant CPO has an open cone (small circle) configuration, with the cone axis parallel to shortening. The development of this CPO causes significant weakening under uniaxial compression, where the shear stresses resolved on the basal planes (Schmid factors) are high.


Scientific Reports | 2018

Author Correction: Quantifying the anisotropy and tortuosity of permeable pathways in clay-rich mudstones using models based on X-ray tomography

Nils R. Backeberg; Francesco Iacoviello; Martin Rittner; Thomas M. Mitchell; Ap Jones; Richard Day; John Wheeler; Paul R. Shearing; Pieter Vermeesch; Alberto Striolo

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.

Collaboration


Dive into the Thomas M. Mitchell's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Giulio Di Toro

University of Manchester

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

José Cembrano

Pontifical Catholic University of Chile

View shared research outputs
Researchain Logo
Decentralizing Knowledge