Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thomas M. Ryan is active.

Publication


Featured researches published by Thomas M. Ryan.


Proceedings of the National Academy of Sciences of the United States of America | 2001

Oxygen radical inhibition of nitric oxide-dependent vascular function in sickle cell disease

Mutay Aslan; Thomas M. Ryan; Brian Adler; Tim M. Townes; Dale A. Parks; J. Anthony Thompson; Albert Tousson; Mark T. Gladwin; Rakesh P. Patel; Margaret M. Tarpey; Ines Batinic-Haberle; C. Roger White; Bruce A. Freeman

Plasma xanthine oxidase (XO) activity was defined as a source of enhanced vascular superoxide (O\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{2}^{{\cdot}-}}}\end{equation*}\end{document}) and hydrogen peroxide (H2O2) production in both sickle cell disease (SCD) patients and knockout-transgenic SCD mice. There was a significant increase in the plasma XO activity of SCD patients that was similarly reflected in the SCD mouse model. Western blot and enzymatic analysis of liver tissue from SCD mice revealed decreased XO content. Hematoxylin and eosin staining of liver tissue of knockout-transgenic SCD mice indicated extensive hepatocellular injury that was accompanied by increased plasma content of the liver enzyme alanine aminotransferase. Immunocytochemical and enzymatic analysis of XO in thoracic aorta and liver tissue of SCD mice showed increased vessel wall and decreased liver XO, with XO concentrated on and in vascular luminal cells. Steady-state rates of vascular O\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{2}^{{\cdot}-}}}\end{equation*}\end{document} production, as indicated by coelenterazine chemiluminescence, were significantly increased, and nitric oxide (⋅NO)-dependent vasorelaxation of aortic ring segments was severely impaired in SCD mice, implying oxidative inactivation of ⋅NO. Pretreatment of aortic vessels with the superoxide dismutase mimetic manganese 5,10,15,20-tetrakis(N-ethylpyridinium-2-yl)porphyrin markedly decreased O\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{2}^{{\cdot}-}}}\end{equation*}\end{document} levels and significantly restored acetylcholine-dependent relaxation, whereas catalase had no effect. These data reveal that episodes of intrahepatic hypoxia-reoxygenation associated with SCD can induce the release of XO into the circulation from the liver. This circulating XO can then bind avidly to vessel luminal cells and impair vascular function by creating an oxidative milieu and catalytically consuming ⋅NO via O\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{2}^{{\cdot}-}}}\end{equation*}\end{document}-dependent mechanisms.


Journal of Biological Chemistry | 2003

Nitric Oxide-dependent Generation of Reactive Species in Sickle Cell Disease ACTIN TYROSINE NITRATION INDUCES DEFECTIVE CYTOSKELETAL POLYMERIZATION

Mutay Aslan; Thomas M. Ryan; Tim M. Townes; Lori Coward; Marion Kirk; Stephen Barnes; C. Bruce Alexander; Steven S. Rosenfeld; Bruce A. Freeman

The intermittent vascular occlusion occurring in sickle cell disease (SCD) leads to ischemia-reperfusion injury and activation of inflammatory processes including enhanced production of reactive oxygen species and increased expression of inducible nitric-oxide synthase (NOS2). Appreciating that impaired nitric oxide-dependent vascular function and the concomitant formation of oxidizing and nitrating species occur in concert with increased rates of tissue reactive oxygen species production, liver and kidney NOS2 expression, tissue 3-nitrotyrosine (NO2Tyr) formation and apoptosis were evaluated in human SCD tissues and a murine model of SCD. Liver and kidney NOS2 expression and NO2Tyr immunoreactivity were significantly increased in SCD mice and humans, but not in nondiseased tissues. TdT-mediated nick end-label (TUNEL) staining showed apoptotic cells in regions expressing elevated levels of NOS2 and NO2Tyr in all SCD tissues. Gas chromatography mass spectrometry analysis revealed increased plasma protein NO2Tyr content and increased levels of hepatic and renal protein NO2Tyr derivatives in SCD (21.4 ± 2.6 and 37.5 ± 7.8 ng/mg) versus wild type mice (8.2 ± 2.2 and 10 ± 1.2 ng/mg), respectively. Western blot analysis and immunoprecipitation of SCD mouse liver and kidney proteins revealed one principal NO2Tyr-containing protein of 42 kDa, compared with controls. Enzymatic in-gel digestion and MALDI-TOF mass spectrometry identified this nitrated protein as actin. Electrospray ionization and fragment analysis by tandem mass spectrometry revealed that 3 of 15 actin tyrosine residues are nitrated (Tyr91, Tyr198, and Tyr240) at positions that significantly modify actin assembly. Confocal microscopy of SCD human and mouse tissues revealed that nitration led to morphologically distinct disorganization of filamentous actin. In aggregate, we have observed that the hemoglobin point mutation of sickle cell disease that mediates hemoglobin polymerization defects is translated, via inflammatory oxidant reactions, into defective cytoskeletal polymerization.


Transgenic Research | 2007

Active integration: new strategies for transgenesis

Eric T. Shinohara; Joseph M. Kaminski; David J. Segal; Pawel Pelczar; Ravindra Kolhe; Thomas M. Ryan; Craig J. Coates; Malcolm J. Fraser; Alfred M. Handler; Ryuzo Yanagimachi; Stefan Moisyadi

This paper presents novel methods for producing transgenic animals, with a further emphasis on how these techniques may someday be applied in gene therapy. There are several passive methods for transgenesis, such as pronuclear microinjection (PNI) and Intracytoplasmic Sperm Injection-Mediated Transgenesis (ICSI-Tr), which rely on the repair mechanisms of the host for transgene (tg) insertion. ICSI-Tr has been shown to be an effective means of creating transgenic animals with a transfection efficiency of approximately 45% of animals born. Furthermore, because this involves the injection of the transgene into the cytoplasm of oocytes during fertilization, limited mosaicism has traditionally occurred using this technique. Current active transgenesis techniques involve the use of viruses, such as disarmed retroviruses which can insert genes into the host genome. However, these methods are limited by the size of the sequence that can be inserted, high embryo mortality, and randomness of insertion. A novel active method has been developed which combines ICSI-Tr with recombinases or transposases to increase transfection efficiency. This technique has been termed “Active Transgenesis” to imply that the tg is inserted into the host genome by enzymes supplied into the oocyte during tg introduction. DNA based methods alleviate many of the costs and time associated with purifying enzyme. Further studies have shown that RNA can be used for the transposase source. Using RNA may prevent problems with continued transposase activity that can occur if a DNA transposase is integrated into the host genome. At present piggyBac is the most effective transposon for stable integration in mammalian systems and as further studies are done to elucidate modifications which improve piggyBac’s specificity and efficacy, efficiency in creating transgenic animals should improve further. Subsequently, these methods may someday be used for gene therapy in humans.


Journal of Biological Chemistry | 2007

JunB and JunD regulate human heme oxygenase-1 gene expression in renal epithelial cells

Thomas D. Hock; Karen T. Liby; Marcienne M. Wright; Sean C. McConnell; Marina Schorpp-Kistner; Thomas M. Ryan; Anupam Agarwal

Heme oxygenase-1 is a highly inducible gene, the product of which catalyzes breakdown of the prooxidant heme. The purpose of this study was to investigate the regulation of the human heme oxygenase-1 gene in renal epithelial cells. DNase I hyper-sensitivity studies identified three distal sites (HS-2, -3, and -4) corresponding to approximately -4.0, -7.2, and -9.2 kb, respectively, of the heme oxygenase-1 promoter in addition to one proximal region, HS-1, which we have shown previously to be an E box. In vivo dimethyl sulfate footprinting of the HS-2 region revealed six individual protected guanines. Two mutations within HS-2 combined with a third mutation of the proximal E box abolished hemin- and cadmium-driven heme oxygenase-1 promoter activation, suggesting that these three sites synergized for maximal heme oxygenase-1 induction. Jun proteins bound to the antioxidant response element in the HS-2 region in vitro and associated with the heme oxygenase-1 promoter in vivo. JunB and JunD contribute opposing effects; JunB activated whereas JunD repressed heme oxygenase-1 expression in human renal epithelial cells, results that were corroborated in junB-/- and junD-/- cells. We propose that heme oxygenase-1 induction is controlled by a dynamic interplay of regulatory proteins, and we provide new insights into the molecular control of the human heme oxygenase-1 gene.


Proceedings of the National Academy of Sciences of the United States of America | 2016

The histone H2A deubiquitinase Usp16 regulates hematopoiesis and hematopoietic stem cell function

Yue Gu; Amanda Jones; Wei Yang; Shanrun Liu; Qian Dai; Yudong Liu; C. Scott Swindle; Dewang Zhou; Zhuo Zhang; Thomas M. Ryan; Tim M. Townes; Christopher A. Klug; Dongquan Chen; Hengbin Wang

Significance Polycomb repressive complex 1 (PRC1) represents an important epigenetic regulator, which exerts its effect on gene expression via histone H2A ubiquitination (ubH2A). We developed a conditional Usp16 knockout mouse model and demonstrated that Usp16 is indispensable for hematopoiesis and hematopoietic stem cell (HSC) lineage commitment. We identified Usp16 to be a H2A deubiquitinase that counterbalances the PRC1 ubiquitin ligase to control ubH2A level in the hematopoietic system. Conditional Usp16 deletion led to altered expression of many regulators of chromatin organization and hematopoiesis. In addition, Usp16 maintains normal HSC cell cycle status via repressing the expression of Cdkn1a, which encodes p21cip1, an inhibitor of cell cycle entry. This study provides novel insights into the epigenetic mechanism that regulates hematopoiesis and HSC function. Epigenetic mechanisms play important regulatory roles in hematopoiesis and hematopoietic stem cell (HSC) function. Subunits of polycomb repressive complex 1 (PRC1), the major histone H2A ubiquitin ligase, are critical for both normal and pathological hematopoiesis; however, it is unclear which of the several counteracting H2A deubiquitinases functions along with PRC1 to control H2A ubiquitination (ubH2A) level and regulates hematopoiesis in vivo. Here we investigated the function of Usp16 in mouse hematopoiesis. Conditional deletion of Usp16 in bone marrow resulted in a significant increase of global ubH2A level and lethality. Usp16 deletion did not change HSC number but was associated with a dramatic reduction of mature and progenitor cell populations, revealing a role in governing HSC lineage commitment. ChIP- and RNA-sequencing studies in HSC and progenitor cells revealed that Usp16 bound to many important hematopoietic regulators and that Usp16 deletion altered the expression of genes in transcription/chromosome organization, immune response, hematopoietic/lymphoid organ development, and myeloid/leukocyte differentiation. The altered gene expression was partly rescued by knockdown of PRC1 subunits, suggesting that Usp16 and PRC1 counterbalance each other to regulate cellular ubH2A level and gene expression in the hematopoietic system. We further discovered that knocking down Cdkn1a (p21cip1), a Usp16 target and regulated gene, rescued the altered cell cycle profile and differentiation defect of Usp16-deleted HSCs. Collectively, these studies identified Usp16 as one of the histone H2A deubiquitinases, which coordinates with the H2A ubiquitin ligase PRC1 to regulate hematopoiesis, and revealed cell cycle regulation by Usp16 as key for HSC differentiation.


Journal of Biological Chemistry | 2009

Humanized Mouse Model of Cooley's Anemia

Yongliang Huo; Sean C. McConnell; Shanrun Liu; Rui Yang; Ting-Ting Zhang; Chiao-Wang Sun; Li-Chen Wu; Thomas M. Ryan

A novel humanized mouse model of Cooleys Anemia (CA) was generated by targeted gene replacement in embryonic stem (ES) cells. Because the mouse does not have a true fetal hemoglobin, a delayed switching human γ to β0 globin gene cassette (γβ0) was inserted directly into the murine β globin locus replacing both adult mouse β globin genes. The inserted human β0 globin allele has a mutation in the splice donor site that produces the same aberrant transcripts in mice as described in human cells. No functional human β globin polypeptide chains are produced. Heterozygous γβ0 mice suffer from microcytic anemia. Unlike previously described animal models of β thalassemia major, homozygous γβ0 mice switch from mouse embryonic globin chains to human fetal γ globin during fetal life. When bred with human α globin knockin mice, homozygous CA mice survive solely upon human fetal hemoglobin at birth. This preclinical animal model of CA can be utilized to study the regulation of globin gene expression, synthesis, and switching; the reactivation of human fetal globin gene expression; and the testing of genetic and cell-based therapies for the correction of thalassemia.


Blood | 2009

Preclinical transfusion-dependent humanized mouse model of β thalassemia major

Yongliang Huo; Sean C. McConnell; Thomas M. Ryan

A preclinical humanized mouse model of beta thalassemia major or Cooley anemia (CA) was generated by targeted gene replacement of the mouse adult globin genes in embryonic stem cells. The mouse adult alpha and beta globin genes were replaced with adult human alpha globin genes (alpha2alpha1) and a human fetal to adult hemoglobin (Hb)-switching cassette (gamma(HPFH)deltabeta(0)), respectively. Similar to human infants with CA, fully humanized mice survived postnatally by synthesizing predominantly human fetal Hb, HbF (alpha(2)gamma(2)), with a small amount of human minor adult Hb, HbA2 (alpha(2)delta(2)). Completion of the human fetal to adult Hb switch after birth resulted in severe anemia marked by erythroid hyperplasia, ineffective erythropoiesis, hemolysis, and death. Similar to human patients, CA mice were rescued from lethal anemia by regular blood transfusion. Transfusion corrected the anemia and effectively suppressed the ineffective erythropoiesis, but led to iron overload. This preclinical humanized animal model of CA will be useful for the development of new transfusion and iron chelation regimens, the study of iron homeostasis in disease, and testing of cellular and genetic therapies for the correction of thalassemia.


Molecular and Cellular Biology | 2011

Human Globin Knock-in Mice Complete Fetal-to-Adult Hemoglobin Switching in Postnatal Development

Sean C. McConnell; Yongliang Huo; Shanrun Liu; Thomas M. Ryan

ABSTRACT Elevated levels of fetal γ-globin can cure disorders caused by mutations in the adult β-globin gene. This clinical finding has motivated studies to improve our understanding of hemoglobin switching. Unlike humans, mice do not express a distinct fetal globin. Transgenic mice that contain the human β-globin locus complete their fetal-to-adult hemoglobin switch prior to birth, with human γ-globin predominantly restricted to primitive erythroid cells. We established humanized (100% human hemoglobin) knock-in mice that demonstrate a distinct fetal hemoglobin (HbF) stage, where γ-globin is the dominant globin chain produced during mid- to late gestation. Human γ- and β-globin gene competition is evident around the time of birth, and γ-globin chain production diminishes in postnatal life, with transient production of HbF reticulocytes. Following completion of the γ- to-β-globin switch, adult erythroid cells synthesize low levels of HbF. We conclude that the knock-in globin genes are expressed in a pattern strikingly similar to that in human development, most notably with postnatal resolution of the fetal-to-adult hemoglobin switch. Our findings are consistent with the importance of BCL11A in hemoglobin switching, since removal of intergenic binding sites for BCL11A results in human γ-globin expression in mouse definitive erythroid cells.


Annals of the New York Academy of Sciences | 2010

Humanized mouse models of Cooley's anemia: correct fetal‐to‐adult hemoglobin switching, disease onset, and disease pathology

Yongliang Huo; Sean C. McConnell; Shanrun Liu; Ting-Ting Zhang; Rui Yang; Jinxiang Ren; Thomas M. Ryan

β thalassemia major or Cooleys Anemia (CA) has been difficult to model in mice due to their lack of a fetal hemoglobin gene equivalent. This summary describes novel preclinical humanized mouse models of CA that survive on human fetal hemoglobin at birth and are blood‐transfusion dependent for life upon completion of their human fetal‐to‐adult hemoglobin switch after birth. These CA models are the first to recapitulate the temporal onset of the disease in human patients. These novel humanized CA disease models are useful for the study of the regulation of globin gene expression, synthesis, and switching; examining the onset of disease pathology; development of transfusion and iron chelation therapies; induction of fetal hemoglobin synthesis; and the testing of novel genetic and cell‐based therapies for the correction of thalassemia.


Methods in Enzymology | 1994

Preparation of recombinant hemoglobin in transgenic mice

Michael P. Reilly; Steven L. McCune; Thomas M. Ryan; Tim M. Townes; Makoto Katsumata; Toshio Asakura

Publisher Summary Transgenic animals are utilized to produce therapeutically important protein products, such as tissue plasminogen activator, factor IX and α 1 -antitrypsin. Additionally, transgenic technology affords the opportunity to create animal models to study the pathophysiology of genetic diseases under controlled experimental conditions. Transgenic techniques provide a powerful approach for further studies of the structural and functional implications of mutated hemoglobins, the pathological consequences of abnormal hemoglobins, and the prospect of producing hemoglobins to be utilized as blood substitutes. Moreover, investigations utilizing transgenic approaches allow an increased understanding of expression and regulation of globin genes, which is important for the development of animal models and treatment of hemoglobinopathies. Such investigations of hemoglobin diseases also provide a basis for further refinement of techniques necessary for targeted insertion of genes into human cells, which increases the prospects of gene therapy as the ultimate cure for certain genetic disorders.

Collaboration


Dive into the Thomas M. Ryan's collaboration.

Top Co-Authors

Avatar

Tim M. Townes

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Shanrun Liu

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Sean C. McConnell

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Yongliang Huo

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Ralph L. Brinster

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael P. Reilly

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar

Chiao-Wang Sun

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Jinxiang Ren

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Richard D. Palmiter

Howard Hughes Medical Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge