Thomas M. Weiger
University of Salzburg
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Thomas M. Weiger.
Journal of Comparative Physiology A-neuroethology Sensory Neural and Behavioral Physiology | 2002
Thomas M. Weiger; Anton Hermann; Irwin B. Levitan
Potassium currents play a critical role in action potential repolarization, setting of the resting membrane potential, control of neuronal firing rates, and regulation of neurotransmitter release. The diversity of the potassium channels that generate these currents is nothing less than staggering. This diversity is generated by multiple genes (as many as 100 and perhaps more in some creatures) encoding the pore-forming channel α subunits, alternative splicing of channel gene transcripts, formation of heteromultimeric channels, participation of auxiliary (non-pore-forming) β and other subunits, and modulation of channel properties by post-translational modifications and other mechanisms. Prominent among the potassium channels are several families of calcium activated potassium channels, which are highly selective for potassium ions as their charge carrier, and require intracellular calcium for channel gating. The modulation of one of these families, that of the large conductance calcium activated and voltage-dependent potassium channels, has been especially widely studied. In this review we discuss a few selected examples of the modulation of these channels, to illustrate some of the molecular mechanisms and physiological consequences of ion channel modulation.
Pflügers Archiv: European Journal of Physiology | 2010
G. F. Sitdikova; Thomas M. Weiger; Anton Hermann
Hydrogen sulfide (H2S) is the third gasotransmitter found to be produced endogenously in living cells to exert physiological functions. Large conductance (maxi) calcium-activated potassium channels (BK), which play an important role in the regulation of electrical activity in many cells, are targets of gasotransmitters. We examined the modulating action of H2S on BK channels from rat GH3 pituitary tumor cells using patch clamp techniques. Application of sodium hydrogen sulfide as H2S donor to the bath solution in whole cell experiments caused an increase of calcium-activated potassium outward currents. In single channel recordings, H2S increased BK channel activity in a concentration-dependent manner. Hydrogen sulfide induced a reversible increase in channel open probability in a voltage-dependent, but calcium independent manner. The reducing agent, dithiothreitol, prevented the increase of open probability by H2S, whereas, the oxidizing agent thimerosal increased channel open probability in the presence of H2S. Our data show that H2S augments BK channel activity, and this effect can be linked to its reducing action on sulfhydryl groups of the channel protein.
Molecular Plant | 2010
Antonius J. M. Matzke; Thomas M. Weiger; Marjori Matzke
The nuclear envelope is increasingly viewed from an electrophysiological perspective by researchers interested in signal transduction pathways that influence gene transcription and other processes in the nucleus. Here, we describe evidence for ion channels and transporters in the nuclear membranes and for possible ion gating by the nuclear pores. We argue that a systems-level understanding of cellular regulation is likely to require the assimilation of nuclear electrophysiology into molecular and biochemical signaling pathways.
Biophysical Journal | 1998
Thomas M. Weiger; Thierry Langer; Anton Hermann
In this study we compared polyamines to various diamines, and we modeled flexibility as well as hydrophobicity properties of these molecules to examine possible structural differences that could explain their external effects on the channels. The natural polyamines (putrescine, cadaverine, spermidine, spermine) and diamines increasing in CH2 chain length from C2 to C12 were used to probe maxi calcium-activated potassium (BK) channels in GH3 pituitary tumor cells when applied extracellularly. In single-channel recordings we found polyamines as well as diamines up to 1,10-diaminodecane to be ineffective in altering channel current amplitudes or kinetics. In contrast, 1,12-diamino dodecane (1,12-DD) was found to be a reversible blocker, with a blocking site at an electrical distance (z delta) of 0.72 within the channel. It reduced single-channel current amplitude, mean channel open time, and channel open probability. In computer simulations structural data, such as flexibility, hydration, and log D values, were calculated. 1,12-DD showed the largest flexibility of all diamines (minimum N-N distance 9.9 A) combined with a marked hydrophobicity due to a 4-5 A hydrophobic intersegment between hydrophilic ends in the molecule, as confirmed by GRID water probe maps and a log D value of -1.82 at pH 7.2. We propose that the amount of hydration of the molecule, more than its flexibility, constitutes an essential parameter for its ability to act as a channel blocker.
Frontiers in Pharmacology | 2012
Anton Hermann; Rosario Donato; Thomas M. Weiger; Walter J. Chazin
S100 Ca2+-binding proteins have been associated with a multitude of intracellular Ca2+-dependent functions including regulation of the cell cycle, cell differentiation, cell motility and apoptosis, modulation of membrane–cytoskeletal interactions, transduction of intracellular Ca2+ signals, and in mediating learning and memory. S100 proteins are fine tuned to read the intracellular free Ca2+ concentration and affect protein phosphorylation, which makes them candidates to modulate certain ion channels and neuronal electrical behavior. Certain S100s are secreted from cells and are found in extracellular fluids where they exert unique extracellular functions. In addition to their neurotrophic activity, some S100 proteins modulate neuronal electrical discharge activity and appear to act directly on ion channels. The first reports regarding these effects suggested S100-mediated alterations in Ca2+ fluxes, K+ currents, and neuronal discharge activity. Recent reports revealed direct and indirect interactions with Ca2+, K+, Cl−, and ligand activated channels. This review focuses on studies of the physical and functional interactions of S100 proteins and ion channels.
Frontiers in Physiology | 2014
G. F. Sitdikova; Roman Fuchs; Verena Kainz; Thomas M. Weiger; Anton Hermann
Introduction: Gases, such as nitric oxide (NO), carbon monoxide (CO), or hydrogen sulfide (H2S), termed gasotransmitters, play an increasingly important role in understanding of how electrical signaling of cells is modulated. H2S is well-known to act on various ion channels and receptors. In a previous study we reported that H2S increased calcium-activated potassium (BK) channel activity. Aims: The goal of the present study is to investigate the modulatory effect of BK channel phosphorylation on the action of H2S on the channel as well as to recalculate and determine the H2S concentrations in aqueous sodium hydrogen sulfide (NaHS) solutions. Methods: Single channel recordings of GH3, GH4, and GH4 STREX cells were used to analyze channel open probability, amplitude, and open dwell times. H2S was measured with an anion selective electrode. Results: The concentration of H2S produced from NaHS was recalculated taking pH, temperature salinity of the perfusate, and evaporation of H2S into account. The results indicate that from a concentration of 300 μM NaHS, only 11–13%, i.e., 34–41 μM is effective as H2S in solution. GH3, GH4, and GH4 STREX cells respond differently to phosphorylation. BK channel open probability (Po) of all cells lines used was increased by H2S in ATP-containing solutions. PKA prevented the action of H2S on channel Po in GH4 and GH4 STREX, but not in GH3 cells. H2S, high significantly increased Po of all PKG pretreated cells. In the presence of PKC, which lowers channel activity, H2S increased channel Po of GH4 and GH4 STREX, but not those of GH3 cells. H2S increased open dwell times of GH3 cells in the absence of ATP significantly. A significant increase of dwell times with H2S was also observed in the presence of okadaic acid. Conclusions: Our results suggest that phosphorylation by PKG primes the channels for H2S activation and indicate that channel phosphorylation plays an important role in the response to H2S.
Trends in Plant Science | 2009
Marjori Matzke; Thomas M. Weiger; István Papp; Antonius J. M. Matzke
Previous work has implicated two predicted ion channels in mediating perinuclear calcium spiking, which is essential for rhizobia-induced root nodule formation in legumes. A new study demonstrates that these ion channels are preferentially permeable to cations, such as potassium, and are located in the nuclear envelope. Here, we consider ways in which the ion channels influence perinuclear calcium spiking and discuss a potentially broader role for nuclear membrane ion channels in signal transduction in plants.
The Journal of Neuroscience | 2005
Hua Wen; Thomas M. Weiger; Tanya S. Ferguson; Mohammad Shahidullah; Samae S. Scott; Irwin B. Levitan
The mammalian voltage-dependent KCNQ channels are responsible for distinct types of native potassium currents and are associated with several human diseases. We cloned a novel Drosophila KCNQ channel (dKCNQ) based on its sequence homology to the mammalian genes. When expressed in Chinese hamster ovary cells, dKCNQ gives rise to a slowly activating and slowly deactivating current that activates in the subthreshold voltage range. Like the M-current produced by mammalian KCNQ channels, dKCNQ current is sensitive to the KCNQ-specific blocker linopirdine and is suppressed by activation of a muscarinic receptor. dKCNQ is also similar to the mammalian channels in that it binds calmodulin (CaM), and CaM binding is necessary to produce functional currents. In situ hybridization analysis demonstrates that dKCNQ mRNA is present in brain cortical neurons, the cardia (proventriculus), and the nurse cells and oocytes of the ovary. We generated mutant flies with deletions in the genomic sequence of dKCNQ. Embryos produced by homozygous deletion females exhibit disorganized nuclei and fail to hatch, suggesting strongly that a maternal contribution of dKCNQ protein and/or mRNA is essential for early embryonic development.
Biomolecules | 2015
Anton Hermann; G. F. Sitdikova; Thomas M. Weiger
All cells contain ion channels in their outer (plasma) and inner (organelle) membranes. Ion channels, similar to other proteins, are targets of oxidative impact, which modulates ion fluxes across membranes. Subsequently, these ion currents affect electrical excitability, such as action potential discharge (in neurons, muscle, and receptor cells), alteration of the membrane resting potential, synaptic transmission, hormone secretion, muscle contraction or coordination of the cell cycle. In this chapter we summarize effects of oxidative stress and redox mechanisms on some ion channels, in particular on maxi calcium-activated potassium (BK) channels which play an outstanding role in a plethora of physiological and pathophysiological functions in almost all cells and tissues. We first elaborate on some general features of ion channel structure and function and then summarize effects of oxidative alterations of ion channels and their functional consequences.
The Journal of General Physiology | 2005
Haoyu Zeng; Thomas M. Weiger; Hong Fei; Angela M. Jaramillo; Irwin B. Levitan
The Drosophila Slowpoke calcium-dependent potassium channel (dSlo) binding protein Slob was discovered by a yeast two-hybrid screen using the carboxy-terminal tail region of dSlo as bait. Slob binds to and modulates the dSlo channel. We have found that there are several Slob proteins, resulting from multiple translational start sites and alternative splicing, and have named them based on their molecular weights (in kD). The larger variants, which are initiated at the first translational start site and are called Slob71 and Slob65, shift the voltage dependence of dSlo activation, measured by the whole cell conductance–voltage relationship, to the left (less depolarized voltages). Slob53 and Slob47, initiated at the third translational start site, also shift the dSlo voltage dependence to the left. In contrast, Slob57 and Slob51, initiated at the second translational start site, shift the conductance–voltage relationship of dSlo substantially to more depolarized voltages, cause an apparent dSlo channel inactivation, and increase the deactivation rate of the channel. These results indicate that the amino-terminal region of Slob plays a critical role in its modulation of dSlo.