Thomas McKay
University of Auckland
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Thomas McKay.
Journal of Applied Physics | 2012
Iain A. Anderson; Todd Gisby; Thomas McKay; Benjamin M. O’Brien; Emilio P. Calius
Dielectric elastomer (DE) actuators are popularly referred to as artificial muscles because their impressive actuation strain and speed, low density, compliant nature, and silent operation capture many of the desirable physical properties of muscle. Unlike conventional robots and machines, whose mechanisms and drive systems rapidly become very complex as the number of degrees of freedom increases, groups of DE artificial muscles have the potential to generate rich motions combining many translational and rotational degrees of freedom. These artificial muscle systems can mimic the agonist-antagonist approach found in nature, so that active expansion of one artificial muscle is taken up by passive contraction in the other. They can also vary their stiffness. In addition, they have the ability to produce electricity from movement. But departing from the high stiffness paradigm of electromagnetic motors and gearboxes leads to new control challenges, and for soft machines to be truly dexterous like their biolo...
Smart Materials and Structures | 2010
Thomas McKay; Benjamin M. O’Brien; Emilio P. Calius; Iain A. Anderson
Dielectric elastomer generators (DEG) in their present form are not suitable for autonomous power generation; they simply increase the amount of power that an electrical energy source can supply. They require a priming charge for each cycle, normally provided by an auxiliary power source but, due to charges being transferred to a load or depleted by system losses, the energy source will eventually need replacing. In this paper we present a self-priming DEG system that is capable of replenishing these charge losses from generated energy, meaning that the energy source no longer requires periodic replacement. We then experimentally demonstrate that this system not only can replenish charge losses, but also is capable of increasing the amount of charge in the system and the voltage across the capacitance storing the charge. For instance, the system was capable of gradually boosting its voltage from 10 V up to 3.25 kV. This is highly advantageous because it was also shown that the efficiency of DEG power generation increases monotonically with DEG voltage. Also, this system allows these higher voltages to be reached without the need for a high voltage transformer, reducing the system cost.
Applied Physics Letters | 2011
Thomas McKay; Benjamin M. O’Brien; Emilio P. Calius; Iain A. Anderson
The potential to produce light-weight, low-cost, wearable dielectric elastomer generators has been limited by the requirement for bulky rigid, and expensive external circuitry. In this letter, we present a soft dielectric elastomer generator whose stretchable circuit elements are integrated within the membrane. The soft generator achieved an energy density of 10 mJ/g at an efficiency of 12% and simply consisted of low-cost acrylic membranes and carbon grease mounted in a frame.
Applied Physics Letters | 2010
Thomas McKay; Benjamin M. O’Brien; Emilio P. Calius; Iain A. Anderson
Dielectric elastomer generators are a form of variable capacitor electricity generator with a high energy density and high flexibility. Currently, dielectric elastomer generators require external circuitry which makes the system bulkier and less flexible. In this paper we present a system that minimizes the external circuitry to six diodes so that high energy density and flexibility is maintained at the system level. An energy density of 12.6 mJ/g was experimentally demonstrated, comparing favorably with similarly sized electromagnetic and electrostatic power generators.
Proceedings of SPIE | 2009
Thomas McKay; Emilio P. Calius; Iain A. Anderson
Dielectric Elastomer (DE) transducers are essentially compliant capacitors fabricated from highly flexible materials that can be used as sensors, actuators and generators. The energy density of DE is proportional to their dielectric constant (εr), therefore an understanding of the dielectric constant and how it can be influenced by the stretch state of the material is required to predict or optimize DE device behavior. DE often operate in a stretched state. Wissler and Mazza, Kofod et al., and Choi et al. all measured an εr of approximately 4.7 for virgin VHB, but their results for prestretched DE showed that the dielectric constant decayed to varying degrees. Ma and Cross measured a dielectric constant of 6 for the same material with no mention of prestretch. In an attempt to resolve this discrepancy, εr measurements were performed on parallel plate capacitors consisting of virgin and stretched VHB4905 tape electroded with either gold sputtered coatings or Nyogel 756G carbon grease. For an unstretched VHB tape, an εr of 4.5 was measured with both electrode types, but the measured εr of equibiaxially stretched carbon specimens was lower by between 10 to 15%. The dielectric constant of VHB under high fields was assessed using blocked force measurements from a dielectric elastomer actuator. Dielectric constants ranging from 4.6-6 for stretched VHB were calculated using the blocked force tests. Figure of merits for DE generators and actuators that incorporate their nonlinear behavior were used to assess the sensitivity of these systems to the dielectric constant.
IEEE-ASME Transactions on Mechatronics | 2011
Iain A. Anderson; Ioannis Ieropoulos; Thomas McKay; Benjamin O'Brien; Chris Melhuish
Artificial muscles based on the dielectric elastomer actuator (DEA) are an attractive technology for autonomous robotic systems. We are currently exploring their use on EcoBot (Ecological roBot), an autonomous robot being developed by Bristol Robotics Lab that uses microbial fuel cells (MFCs). DEA will provide actuators for fuel cell maintenance and other goals and will increase active mission time through greater mechanical efficiency and reduced mass. Artificial muscles use high voltages and running them normally requires voltage converters to boost the voltage on delivered charge several hundred times. A dielectric elastomer generator (DEG) when used with a recently developed self-priming circuit (SPC) can supply the high-voltage power directly to artificial muscle systems. The SPC can also be started using an initial low-voltage charge from another energy harvester such as a bank of MFCs or a solar cell array. This combination could lead to a completely autonomous power source for robotic artificial muscles. We demonstrate a proof-of-concept portable self-primed DEG for harvesting wind energy from moving tree branches.
Applied Physics Letters | 2011
Iain A. Anderson; Tony Chun Hin Tse; Tokushu Inamura; Benjamin M. O’Brien; Thomas McKay; Todd Gisby
We present a soft, bearing-free artificial muscle motor that cannot only turn a shaft but also grip and reposition it through a flexible gear. The bearing-free operation provides a foundation for low complexity soft machines, with multiple degree-of-freedom actuation, that can act simultaneously as motors and manipulators. The mechanism also enables an artificial muscle controlled gear change. Future work will include self-sensing feedback for precision, multidegree-of-freedom operation.
Applied Physics Letters | 2012
Benjamin M. O’Brien; Thomas McKay; Todd Gisby; Iain A. Anderson
Electrostatic motors—first used by Benjamin Franklin to rotisserie a turkey—are making a comeback in the form of high energy density dielectric elastomer artificial muscles. We present a self-commutated artificial muscle motor that uses dielectric elastomer switches in the place of bulky external electronics. The motor simply requires a DC input voltage to rotate a shaft (0.73 Nm/kg, 0.24 Hz) and is a step away from hard metallic electromagnetic motors towards a soft, light, and printable future.
Smart Materials and Structures | 2015
Thomas McKay; Samuel Rosset; Iain A. Anderson; Herbert Shea
This paper reports the design, fabrication, and testing of a soft dielectric elastomer power generator with a volume of less than 1 cm3. The generator is well suited to harvest energy from ambient and from human body motion as it can harvest from low frequency (sub-Hz) motions, and is compact and lightweight. Dielectric elastomers are highly stretchable variable capacitors. Electrical energy is produced when the deformation of a stretched, charged dielectric elastomer is relaxed; like-charges are compressed together and opposite-charges are pushed apart, resulting in an increased voltage. This technology provides an opportunity to produce soft, high energy density generators with unparalleled robustness. Two major issues block this goal: current configurations require rigid frames that maintain the dielectric elastomer in a prestretched state, and high energy densities have come at the expense of short lifetime. This paper presents a self-supporting stacked generator configuration which does not require rigid frames. The generator consists of 48 generator films stacked on top of each other, resulting in a structure that fits within an 11 mm diameter footprint while containing enough active material to produce useful power. To ensure sustainable power production, we also present a mathematical model for designing the electronic control of the generator which optimizes energy production while limiting the electrical stress on the generator below failure limits. When cyclically compressed at 1.6 Hz, our generator produced 1.8 mW of power, which is sufficient for many low-power wireless sensor nodes. This performance compares favorably with similarly scaled electromagnetic, piezoelectric, and electrostatic generators. The generators small form factor and ability to harvest useful energy from low frequency motions such as tree swaying or shoe impact provides an opportunity to deliver power to remote wireless sensor nodes or to distributed points in the human body without the need for costly periodic battery replacement
Applied Physics Letters | 2014
Stacy Hunt; Thomas McKay; Iain A. Anderson
Dielectric elastomer actuators that can provide muscle-like actuation are unable to self-heal like real muscle tissue. This severely limits dielectric elastomer reliability and robustness. This paper describes a way to instill self-healing into the DE by using a two-phase dielectric consisting of an open-cell silicone sponge saturated with silicone oil. When the dielectric is breached, the oil is able to flow back into any void, re-establishing the dielectric structure. The sponge holds the oil in place and provides dimensional stability, while the oil ensures the integrity of the dielectric layer. The operation of this has been demonstrated in a prototype DE actuator that continued to function despite being perforated multiple times with a sharp object.