Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thomas Musich is active.

Publication


Featured researches published by Thomas Musich.


Journal of Virology | 2011

A Conserved Determinant in the V1 Loop of HIV-1 Modulates the V3 Loop To Prime Low CD4 Use and Macrophage Infection

Thomas Musich; Paul J. Peters; Maria Paz Gonzalez-Perez; James E. Robinson; Susan Zolla-Pazner; Jonathan K. Ball; Katherine Luzuriaga; Paul R. Clapham

ABSTRACT The CD4 binding site (CD4bs) on the HIV-1 envelope plays a major role in determining the capacity of R5 viruses to infect primary macrophages. Thus, envelope determinants within or proximal to the CD4bs have been shown to control the use of low CD4 levels on macrophages for infection. These residues affect the affinity for CD4 either directly or indirectly by altering the exposure of CD4 contact residues. Here, we describe a single amino acid determinant in the V1 loop that also modulates macrophage tropism. Thus, we identified an E153G substitution that conferred high levels of macrophage infectivity for several heterologous R5 envelopes, while the reciprocal G153E substitution abrogated infection. Shifts in macrophage tropism were associated with dramatic shifts in sensitivity to the V3 loop monoclonal antibody (MAb), 447-52D and soluble CD4, as well as more modest changes in sensitivity to the CD4bs MAb, b12. These observations are consistent with an altered conformation or exposure of the V3 loop that enables the envelope to use low CD4 levels for infection. The modest shifts in b12 sensitivity suggest that residue 153 impacts on the exposure of the CD4bs. However, the more intense shifts in sCD4 sensitivity suggest additional mechanisms that likely include an increased ability of the envelope to undergo conformational changes following binding to suboptimal levels of cell surface CD4. In summary, we show that a conserved determinant in the V1 loop modulates the V3 loop to prime low CD4 use and macrophage infection.


Journal of Virology | 2008

Engineered Intermonomeric Disulfide Bonds in the Globular Domain of Newcastle Disease Virus Hemagglutinin-Neuraminidase Protein: Implications for the Mechanism of Fusion Promotion

Paul J. Mahon; Anne M. Mirza; Thomas Musich; Ronald M. Iorio

ABSTRACT The promotion of membrane fusion by Newcastle disease virus (NDV) requires an interaction between the viral hemagglutinin-neuraminidase (HN) and fusion (F) proteins, although the mechanism by which this interaction regulates fusion is not clear. The NDV HN protein exists as a tetramer composed of a pair of dimers. Based on X-ray crystallographic studies of the NDV HN globular domain (S. Crennell et al., Nat. Struct. Biol. 7:1068-1074, 2000), it was proposed that the protein undergoes a significant conformational change from an initial structure having minimal intermonomeric contacts to a structure with a much more extensive dimer interface. This conformational change was predicted to be integral to fusion promotion with the minimal interface form required to maintain F in its prefusion state until HN binds receptors. However, no evidence for such a conformational change exists for any other paramyxovirus attachment protein. To test the NDV model, we have engineered a pair of intermonomeric disulfide bonds across the dimer interface in the globular domain of an otherwise non-disulfide-linked NDV HN protein by the introduction of cysteine substitutions for residues T216 and D230. The disulfide-linked dimer is formed both intracellularly and in the absence of receptor binding and is efficiently expressed at the cell surface. The disulfide bonds preclude formation of the minimal interface form of the protein and yet enhance both receptor-binding activity at 37°C and fusion promotion. These results confirm that neither the minimal interface form of HN nor the proposed drastic conformational change in the protein is required for fusion.


Retrovirology | 2015

HIV-1 non-macrophage-tropic R5 envelope glycoproteins are not more tropic for entry into primary CD4+ T-cells than envelopes highly adapted for macrophages

Thomas Musich; Olivia O’Connell; Maria Paz Gonzalez-Perez; Cynthia A. Derdeyn; Paul J. Peters; Paul R. Clapham

BackgroundNon-mac-tropic HIV-1 R5 viruses are predominantly transmitted and persist in immune tissue even in AIDS patients who carry highly mac-tropic variants in the brain. Non-mac-tropic R5 envelopes (Envs) require high CD4 levels for infection contrasting with highly mac-tropic Envs, which interact more efficiently with CD4 and mediate infection of macrophages that express low CD4. Non-mac-tropic R5 Envs predominantly target T-cells during transmission and in immune tissue where they must outcompete mac-tropic variants. Here, we investigated whether Env+ pseudoviruses bearing transmitted/founder (T/F), early and late disease non-mac-tropic R5 envelopes mediated more efficient infection of CD4+ T-cells compared to those with highly mac-tropic Envs.ResultsHighly mac-tropic Envs mediated highest infectivity for primary T-cells, Jurkat/CCR5 cells, myeloid dendritic cells, macrophages, and HeLa TZM-bl cells, although this was most dramatic on macrophages. Infection of primary T-cells mediated by all Envs was low. However, infection of T-cells was greatly enhanced by increasing virus attachment with DEAE dextran and spinoculation, which enhanced the three Env+u2009virus groups to similar extents. Dendritic cell capture of viruses and trans-infection also greatly enhanced infection of primary T-cells. In trans-infection assays, non-mac-tropic R5 Envs were preferentially enhanced and those from late disease mediated levels of T-cell infection that were equivalent to those mediated by mac-tropic Envs.ConclusionsOur results demonstrate that T/F, early or late disease non-mac-tropic R5 Envs do not preferentially mediate infection of primary CD4+ T-cells compared to highly mac-tropic Envs from brain tissue. We conclude that non-macrophage-tropism of HIV-1 R5 Envs in vitro is determined predominantly by a reduced capacity to target myeloid cells via low CD4 rather than a specific adaptation for T-cells entry that precludes macrophage infection.


Journal of Virology | 2017

Monoclonal Antibodies to V2, V3, the CD4-binding site and gp41 HIV-1 Mediate Phagocytosis in a Dose-dependent Manner.

Thomas Musich; Liuzhe Li; Lily Liu; Susan Zolla-Pazner; Marjorie Robert-Guroff; Miroslaw K. Gorny

ABSTRACT In light of the weak or absent neutralizing activity mediated by anti-V2 monoclonal antibodies (MAbs), we tested whether they can mediate Ab-dependent cellular phagocytosis (ADCP), which is an important element of anti-HIV-1 immunity. We tested six anti-V2 MAbs and compared them with 21 MAbs specific for V3, the CD4-binding site (CD4bs), and gp41 derived from chronically HIV-1-infected individuals and produced by hybridoma cells. ADCP activity was measured by flow cytometry using uptake by THP-1 monocytic cells of fluorescent beads coated with gp120, gp41, BG505 SOSIP.664, or BG505 DS-SOSIP.664 complexed with MAbs. The measurement of ADCP activity by the area under the curve showed significantly higher activity of anti-gp41 MAbs than of the members of the three other groups of MAbs tested using beads coated with monomeric gp41 or gp120; anti-V2 MAbs were dominant compared to anti-V3 and anti-CD4bs MAbs against clade C gp120ZM109. ADCP activity mediated by V2 and V3 MAbs was positive against stabilized DS-SOSIP.664 trimer but negligible against SOSIP.664 targets, suggesting that a closed envelope conformation better exposes the variable loops. Two IgG3 MAbs against the V2 and V3 regions displayed dominant ADCP activity compared to a panel of IgG1 MAbs. This superior ADCP activity was confirmed when two of three recombinant IgG3 anti-V2 MAbs were compared to their IgG1 counterparts. The study demonstrated dominant ADCP activity of anti-gp41 against monomers but not trimers, with some higher activity of anti-V2 MAbs than of anti-V3 and anti-CD4bs MAbs. The ability to mediate ADCP suggests a mechanism by which anti-HIV-1 envelope Abs can contribute to protective efficacy. IMPORTANCE Anti-V2 antibodies (Abs) correlated with reduced risk of HIV-1 infection in recipients of the RV144 vaccine, suggesting that they play a protective role, but a mechanism providing such protection remains to be determined. The rare and weak neutralizing activities of anti-V2 MAbs prompted us to study Fc-mediated activities. We compared anti-V2 MAbs with other MAbs specific for V3, CD4bs, and gp41 for Ab-dependent cellular phagocytosis (ADCP) activity, implicated in protective immunity. The anti-V2 MAbs displayed stronger activity than other anti-gp120 MAbs in screening against one of two gp120s and against DS-SOSIP, which mimics the native trimer. The activity of anti-gp41 MAbs was superior in targeting monomeric gp41 but was comparable to that seen against trimers, which may not adequately expose gp41 epitopes. While anti-envelope MAbs in general mediated ADCP activity, anti-V2 MAbs displayed some dominance compared to other MAbs. Our demonstration that anti-V2 MAbs mediate ADCP activity suggests a functional mechanism for their contribution to protective efficacy.


Virology | 2015

Loss of marginal zone B-cells in SHIVSF162P4 challenged rhesus macaques despite control of viremia to low or undetectable levels in chronic infection

Thorsten Demberg; Venkatramanan Mohanram; Thomas Musich; Egidio Brocca-Cofano; Katherine M. McKinnon; David Venzon; Marjorie Robert-Guroff

Marginal zone (MZ) B cells generate T-independent antibody responses to pathogens before T-dependent antibodies arise in germinal centers. They have been identified in cynomolgus monkeys and monitored during acute SIV infection, yet have not been well-studied in rhesus macaques. Here we characterized rhesus macaque MZ B cells, present in secondary lymphoid tissue but not peripheral blood, as CD19(+), CD20(+), CD21(hi), IgM(+), CD22(+), CD38(+), BTLA(+), CD40(+), CCR6(+) and BCL-2(+). Compared to healthy macaques, SHIVSF162P4-infected animals showed decreased total B cells and MZ B cells and increased MZ B cell Ki-67 expression early in chronic infection. These changes persisted in late chronic infection, despite viremia reductions to low or undetectable levels. Expression levels of additional phenotypic markers and RNA PCR array analyses were in concert with continued low-level activation and diminished function of MZ B cells. We conclude that MZ B-cell dysregulation and dysfunction associated with SIV/HIV infection are not readily reversible.


Retrovirology | 2015

Infection of ectocervical tissue and universal targeting of T-cells mediated by primary non-macrophage-tropic and highly macrophage-tropic HIV-1 R5 envelopes

Paul J. Peters; Maria Paz Gonzalez-Perez; Thomas Musich; Tiffany A. Moore Simas; Rongheng Lin; Abraham N. Morse; Robin J. Shattock; Cynthia A. Derdeyn; Paul R. Clapham

BackgroundHIV-1 variants carrying non-macrophage-tropic HIV-1 R5 envelopes (Envs) are predominantly transmitted and persist in immune tissue even in AIDS patients who have highly macrophage-tropic variants in the brain. Non-macrophage-tropic R5 Envs require high levels of CD4 for infection contrasting with macrophage-tropic Envs, which can efficiently mediate infection of cells via low CD4. Here, we investigated whether non-macrophage-tropic R5 Envs from the acute stage of infection (including transmitted/founder Env) mediated more efficient infection of ectocervical explant cultures compared to non-macrophage-tropic and highly macrophage-tropic R5 Envs from late disease.ResultsWe used Env+ pseudovirions that carried a GFP reporter gene to measure infection of the first cells targeted in ectocervical explant cultures. In straight titrations of Env+ pseudovirus supernatants, mac-tropic R5 Envs from late disease mediated slightly higher infectivities for ectocervical explants although this was not significant. Surprisingly, explant infection by several T/F/acute Envs was lower than for Envs from late disease. However, when infectivity for explants was corrected to account for differences in the overall infectivity of each Env+ pseudovirus (measured on highly permissive HeLa TZM-bl cells), non-mac-tropic early and late disease Env+ pseudoviruses mediated significantly higher infection. This observation suggests that cervical tissue preferentially supports non-mac-tropic Env+ viruses compared to mac-tropic viruses. Finally, we show that T-cells were the main targets for infection regardless of whether explants were stimulated with T-cell or monocyte/macrophage cytokines. There was no evidence of macrophage infection even for pseudovirions carrying highly mac-tropic Envs from brain tissue or for the highly mac-tropic, laboratory strain, BaL, which targeted T-cells in the explant tissue.ConclusionsOur data support ectocervical tissue as a favorable environment for non-mac-tropic HIV-1 R5 variants and emphasize the role of T-cells as initial targets for infection even for highly mac-tropic variants.


JCI insight | 2017

Flow virometric sorting and analysis of HIV quasispecies from plasma

Thomas Musich; J Jones; Brandon F. Keele; Lisa M. Miller Jenkins; Thorsten Demberg; Thomas S. Uldrick; Robert Yarchoan; Marjorie Robert-Guroff

Flow cytometry is utilized extensively for cellular analysis, but technical limitations have prevented its routine application for characterizing virus. The recent introduction of nanoscale fluorescence-activated cytometric cell sorting now allows analysis of individual virions. Here, we demonstrate staining and sorting of infectious HIV. Fluorescent antibodies specific for cellular molecules found on budding virions were used to label CCR5-tropic Bal HIV and CXCR4-tropic NL4.3 HIV Env-expressing pseudovirions made in THP-1 cells (monocyte/macrophage) and H9 cells (T cells), respectively. Using a flow cytometer, we resolved the stained virus beyond isotype staining and demonstrated purity and infectivity of sorted virus populations on cells with the appropriate coreceptors. We subsequently sorted infectious simian/human immunodeficiency virus from archived plasma. Recovery was approximately 0.5%, but virus present in plasma was already bound to viral-specific IgG generated in vivo, likely contributing to the low yield. Importantly, using two broadly neutralizing HIV antibodies, PG9 and VRC01, we also sorted virus from archived human plasma and analyzed the sorted populations genetically and by proteomics, identifying the quasispecies present. The ability to sort infectious HIV from clinically relevant samples provides material for detailed molecular, genetic, and proteomic analyses applicable to future design of vaccine antigens and potential development of personalized treatment regimens.


Clinical Immunology | 2015

Purification and functional characterization of mucosal IgA from vaccinated and SIV-infected rhesus macaques

Thomas Musich; Thorsten Demberg; Ian L. Morgan; Jacob D. Estes; Genoveffa Franchini; Marjorie Robert-Guroff

Vaccine-induced mucosal antibodies are often evaluated using small volumes of secretory fluids. However, fecal matter containing mucosal IgA is abundant. We purified fecal IgA from five SIV-vaccinated and five SIV-infected rhesus macaques by sequential affinity chromatography. The purified IgA was dimeric by native PAGE, contained secretory component, and was analogous to IgA in colostrum and vaginal fluid by western blot. IgA from one infected and four vaccinated animals neutralized H9-derived SIV(mac)251 with IC(50)s as low as 1 μg/mL. Purified IgAs inhibited transcytosis and exhibited phagocytic activity, the latter significantly correlated with SIV(mac)251 Env-specific IgA in the purified samples. Among different affinity resins, peptide M was optimal compared to jacalin, anti-monkey IgA and SSL7 for IgA purification, as confirmed using tandem peptide M/anti-monkey IgA columns. Fecal IgA provided material sufficient for several assays relevant to protective efficacy, and was shown to be multifunctional. Our approach is potentially applicable to human clinical studies.


Future Virology | 2010

Variation in the biological properties of HIV-1 R5 envelopes: implications of envelope structure, transmission and pathogenesis

Paul J. Peters; Alexander Repik; Thomas Musich; Maria Paz Gonzalez-Perez; Catherine Caron; Richard J. P. Brown; Jonathan K. Ball; Paul R. Clapham


Journal of Virology | 2017

Monoclonal Antibodies Specific for the V2, V3, CD4-Binding Site, and gp41 of HIV-1 Mediate Phagocytosis in a Dose-Dependent Manner

Thomas Musich; Liuzhe Li; Lily Liu; Susan Zolla-Pazner; Marjorie Robert-Guroff; Miroslaw K. Gorny; Guido Silvestri

Collaboration


Dive into the Thomas Musich's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thorsten Demberg

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Maria Paz Gonzalez-Perez

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar

Paul J. Peters

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar

Paul R. Clapham

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Venzon

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Susan Zolla-Pazner

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge