Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thomas O. Eichmann is active.

Publication


Featured researches published by Thomas O. Eichmann.


Cell Metabolism | 2012

FAT SIGNALS - Lipases and Lipolysis in Lipid Metabolism and Signaling

Rudolf Zechner; Robert Zimmermann; Thomas O. Eichmann; Sepp D. Kohlwein; Guenter Haemmerle; Achim Lass; Frank Madeo

Lipolysis is defined as the catabolism of triacylglycerols stored in cellular lipid droplets. Recent discoveries of essential lipolytic enzymes and characterization of numerous regulatory proteins and mechanisms have fundamentally changed our perception of lipolysis and its impact on cellular metabolism. New findings that lipolytic products and intermediates participate in cellular signaling processes and that “lipolytic signaling” is particularly important in many nonadipose tissues unveil a previously underappreciated aspect of lipolysis, which may be relevant for human disease.


Nature Medicine | 2011

ATGL-mediated fat catabolism regulates cardiac mitochondrial function via PPAR-[alpha] and PGC-1

Guenter Haemmerle; Tarek Moustafa; G. Woelkart; Sabrina Büttner; Albrecht Schmidt; T. van de Weijer; Matthijs K. C. Hesselink; Doris Jaeger; Petra C. Kienesberger; Kathrin A. Zierler; Renate Schreiber; Thomas O. Eichmann; Dagmar Kolb; P. Kotzbeck; Martina Schweiger; Manju Kumari; Sandra Eder; Gabriele Schoiswohl; N. Wongsiriroj; Nina M. Pollak; Franz P. W. Radner; K. Preiss Landl; T. Kolbe; T. Rulicke; Burkert Pieske; M. Trauner; Achim Lass; Robert Zimmermann; Gerald Hoefler; S. Cinti

Peroxisome proliferator-activated receptors (PPARs) are nuclear hormone receptors that regulate genes involved in energy metabolism and inflammation. For biological activity, PPARs require cognate lipid ligands, heterodimerization with retinoic X receptors, and coactivation by PPAR-γ coactivator-1α or PPAR-γ coactivator-1β (PGC-1α or PGC-1β, encoded by Ppargc1a and Ppargc1b, respectively). Here we show that lipolysis of cellular triglycerides by adipose triglyceride lipase (patatin-like phospholipase domain containing protein 2, encoded by Pnpla2; hereafter referred to as Atgl) generates essential mediator(s) involved in the generation of lipid ligands for PPAR activation. Atgl deficiency in mice decreases mRNA levels of PPAR-α and PPAR-δ target genes. In the heart, this leads to decreased PGC-1α and PGC-1β expression and severely disrupted mitochondrial substrate oxidation and respiration; this is followed by excessive lipid accumulation, cardiac insufficiency and lethal cardiomyopathy. Reconstituting normal PPAR target gene expression by pharmacological treatment of Atgl-deficient mice with PPAR-α agonists completely reverses the mitochondrial defects, restores normal heart function and prevents premature death. These findings reveal a potential treatment for the excessive cardiac lipid accumulation and often-lethal cardiomyopathy in people with neutral lipid storage disease, a disease marked by reduced or absent ATGL activity.


American Journal of Physiology-endocrinology and Metabolism | 2009

Neutral lipid storage disease: genetic disorders caused by mutations in adipose triglyceride lipase/PNPLA2 or CGI-58/ABHD5

Martina Schweiger; Achim Lass; Robert A. Zimmermann; Thomas O. Eichmann; Rudolf Zechner

Neutral lipid storage disease (NLSD) is a group of autosomal recessive disorders characterized by the excessive accumulation of neutral lipids in multiple tissues. Recently, two genes, adipose triglyceride lipase (ATGL/PNPLA2) and comparative gene identification-58 (CGI-58/ABHD5), have been shown to cause NLSD. ATGL specifically hydrolyzes the first fatty acid from triacylglycerols (TG) and CGI-58/ABHD5 stimulates ATGL activity by a currently unknown mechanism. Mutations in both the ATGL and the CGI-58 genes are associated with systemic TG accumulation, yet the resulting clinical manifestations are not identical. Patients with defective ATGL function suffer from more severe myopathy (NLSDM) than patients with defective CGI-58 function. On the other hand, CGI-58 mutations are always associated with ichthyosis (NLSDI), which was not observed in patients with defective ATGL function. These observations indicate an ATGL-independent function of CGI-58. This review summarizes recent findings with the goal of relating structural variants of ATGL and CGI-58 to functional consequences in lipid metabolism.


Journal of Biological Chemistry | 2010

Growth Retardation, Impaired Triacylglycerol Catabolism, Hepatic Steatosis, and Lethal Skin Barrier Defect in Mice Lacking Comparative Gene Identification-58 (CGI-58)

Franz P. W. Radner; Ingo Streith; Gabriele Schoiswohl; Martina Schweiger; Manju Kumari; Thomas O. Eichmann; Gerald N. Rechberger; Harald Koefeler; Sandra Eder; Silvia Schauer; H. Christian Theussl; Karina Preiss-Landl; Achim Lass; Robert A. Zimmermann; Gerald Hoefler; Rudolf Zechner; Guenter Haemmerle

Comparative gene identification-58 (CGI-58), also designated as α/β-hydrolase domain containing-5 (ABHD-5), is a lipid droplet-associated protein that activates adipose triglyceride lipase (ATGL) and acylates lysophosphatidic acid. Activation of ATGL initiates the hydrolytic catabolism of cellular triacylglycerol (TG) stores to glycerol and nonesterified fatty acids. Mutations in both ATGL and CGI-58 cause “neutral lipid storage disease” characterized by massive accumulation of TG in various tissues. The analysis of CGI-58-deficient (Cgi-58−/−) mice, presented in this study, reveals a dual function of CGI-58 in lipid metabolism. First, systemic TG accumulation and severe hepatic steatosis in newborn Cgi-58−/− mice establish a limiting role for CGI-58 in ATGL-mediated TG hydrolysis and supply of nonesterified fatty acids as energy substrate. Second, a severe skin permeability barrier defect uncovers an essential ATGL-independent role of CGI-58 in skin lipid metabolism. The neonatal lethal skin barrier defect is linked to an impaired hydrolysis of epidermal TG. As a consequence, sequestration of fatty acids in TG prevents the synthesis of acylceramides, which are essential lipid precursors for the formation of a functional skin permeability barrier. This mechanism may also underlie the pathogenesis of ichthyosis in neutral lipid storage disease patients lacking functional CGI-58.


Journal of Biological Chemistry | 2012

Studies on the Substrate and Stereo/Regioselectivity of Adipose Triglyceride Lipase, Hormone-sensitive Lipase, and Diacylglycerol-O-acyltransferases

Thomas O. Eichmann; Manju Kumari; Joel T. Haas; Robert V. Farese; Robert Zimmermann; Achim Lass; Rudolf Zechner

Background: Adipose triglyceride lipase (ATGL) degrades triacylglycerol to diacylglycerol (DAG). The stereo/regioselectivity of ATGL is unknown. Results: ATGL specifically generates sn-1,3 and, in the presence of its co-activator CGI-58, sn-1,3 and sn-2,3 DAG. Conclusion: ATGL generates distinct DAG isoforms that cannot directly enter phospholipid synthesis or activate protein kinase C. Significance: Elucidation of the stereo/regioselectivity of ATGL is crucial to understand cellular DAG metabolism and signaling. Adipose triglyceride lipase (ATGL) is rate-limiting for the initial step of triacylglycerol (TAG) hydrolysis, generating diacylglycerol (DAG) and fatty acids. DAG exists in three stereochemical isoforms. Here we show that ATGL exhibits a strong preference for the hydrolysis of long-chain fatty acid esters at the sn-2 position of the glycerol backbone. The selectivity of ATGL broadens to the sn-1 position upon stimulation of the enzyme by its co-activator CGI-58. sn-1,3 DAG is the preferred substrate for the consecutive hydrolysis by hormone-sensitive lipase. Interestingly, diacylglycerol-O-acyltransferase 2, present at the endoplasmic reticulum and on lipid droplets, preferentially esterifies sn-1,3 DAG. This suggests that ATGL and diacylglycerol-O-acyltransferase 2 act coordinately in the hydrolysis/re-esterification cycle of TAGs on lipid droplets. Because ATGL preferentially generates sn-1,3 and sn-2,3, it suggests that TAG-derived DAG cannot directly enter phospholipid synthesis or activate protein kinase C without prior isomerization.


Nature Communications | 2016

A novel mechanism for the biogenesis of outer membrane vesicles in Gram-negative bacteria.

Sandro Roier; Franz G. Zingl; Fatih Cakar; Sanel Durakovic; Paul Kohl; Thomas O. Eichmann; Lisa Klug; Bernhard Gadermaier; Katharina Weinzerl; Ruth Prassl; Achim Lass; Günther Daum; Joachim Reidl; Mario F. Feldman; Stefan Schild

Bacterial outer membrane vesicles (OMVs) have important biological roles in pathogenesis and intercellular interactions, but a general mechanism of OMV formation is lacking. Here we show that the VacJ/Yrb ABC (ATP-binding cassette) transport system, a proposed phospholipid transporter, is involved in OMV formation. Deletion or repression of VacJ/Yrb increases OMV production in two distantly related Gram-negative bacteria, Haemophilus influenzae and Vibrio cholerae. Lipidome analyses demonstrate that OMVs from VacJ/Yrb-defective mutants in H. influenzae are enriched in phospholipids and certain fatty acids. Furthermore, we demonstrate that OMV production and regulation of the VacJ/Yrb ABC transport system respond to iron starvation. Our results suggest a new general mechanism of OMV biogenesis based on phospholipid accumulation in the outer leaflet of the outer membrane. This mechanism is highly conserved among Gram-negative bacteria, provides a means for regulation, can account for OMV formation under all growth conditions, and might have important pathophysiological roles in vivo.


Journal of Lipid Research | 2010

Adipose triglyceride lipase plays a key role in the supply of the working muscle with fatty acids

Gabriele Schoiswohl; Martina Schweiger; Renate Schreiber; Gregor Gorkiewicz; Karina Preiss-Landl; Ulrike Taschler; Kathrin A. Zierler; Franz P. W. Radner; Thomas O. Eichmann; Petra C. Kienesberger; Sandra Eder; Achim Lass; Guenter Haemmerle; Thomas J. Alsted; Bente Kiens; Gerald Hoefler; Rudolf Zechner; Robert A. Zimmermann

FAs are mobilized from triglyceride (TG) stores during exercise to supply the working muscle with energy. Mice deficient for adipose triglyceride lipase (ATGL-ko) exhibit defective lipolysis and accumulate TG in adipose tissue and muscle, suggesting that ATGL deficiency affects energy availability and substrate utilization in working muscle. In this study, we investigated the effect of moderate treadmill exercise on blood energy metabolites and liver glycogen stores in mice lacking ATGL. Because ATGL-ko mice exhibit massive accumulation of TG in the heart and cardiomyopathy, we also investigated a mouse model lacking ATGL in all tissues except cardiac muscle (ATGL-ko/CM). In contrast to ATGL-ko mice, these mice did not accumulate TG in the heart and had normal life expectancy. Exercise experiments revealed that ATGL-ko and ATGL-ko/CM mice are unable to increase circulating FA levels during exercise. The reduced availability of FA for energy conversion led to rapid depletion of liver glycogen stores and hypoglycemia. Together, our studies suggest that ATGL-ko mice cannot adjust circulating FA levels to the increased energy requirements of the working muscle, resulting in an increased use of carbohydrates for energy conversion. Thus, ATGL activity is required for proper energy supply of the skeletal muscle during exercise.


Nature Chemical Biology | 2013

Development of small-molecule inhibitors targeting adipose triglyceride lipase

Nicole Mayer; Martina Schweiger; Matthias Romauch; Gernot F. Grabner; Thomas O. Eichmann; Elisabeth Fuchs; Jakov Ivkovic; Christoph Heier; Irina Mrak; Achim Lass; Gerald Höfler; Christian Fledelius; Rudolf Zechner; Robert A. Zimmermann; Rolf Breinbauer

Adipose triglyceride lipase (ATGL) is rate-limiting in the mobilization of fatty acids from cellular triglyceride stores. This central role in lipolysis marks ATGL as interesting pharmacological target since deregulated fatty acid metabolism is closely linked to dyslipidemic and metabolic disorders. Here we report on the development and characterization of a small-molecule inhibitor of ATGL. Atglistatin is selective for ATGL and reduces fatty acid mobilization in vitro and in vivo.


Journal of Chromatography B | 2014

A versatile ultra-high performance LC-MS method for lipid profiling

Oskar L. Knittelfelder; Bernd P. Weberhofer; Thomas O. Eichmann; Sepp D. Kohlwein; Gerald N. Rechberger

Highlights • UPLC-MSE based method for lipid separation and identification.• The method is suitable for polar and non-polar lipid species.• Excellent separation of lipid species within lipid classes.• Identification of low abundant lipid species.• May be combined with ESI-MS both in positive and negative ionization mode.


Cellular and Molecular Life Sciences | 2015

DAG tales: the multiple faces of diacylglycerol—stereochemistry, metabolism, and signaling

Thomas O. Eichmann; Achim Lass

The neutral lipids diacylglycerols (DAGs) are involved in a plethora of metabolic pathways. They function as components of cellular membranes, as building blocks for glycero(phospho)lipids, and as lipid second messengers. Considering their central role in multiple metabolic processes and signaling pathways, cellular DAG levels require a tight regulation to ensure a constant and controlled availability. Interestingly, DAG species are versatile in their chemical structure. Besides the different fatty acid species esterified to the glycerol backbone, DAGs can occur in three different stereo/regioisoforms, each with unique biological properties. Recent scientific advances have revealed that DAG metabolizing enzymes generate and distinguish different DAG isoforms, and that only one DAG isoform holds signaling properties. Herein, we review the current knowledge of DAG stereochemistry and their impact on cellular metabolism and signaling. Further, we describe intracellular DAG turnover and its stereochemistry in a 3-pool model to illustrate the spatial and stereochemical separation and hereby the diversity of cellular DAG metabolism.

Collaboration


Dive into the Thomas O. Eichmann's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dagmar Kratky

Medical University of Graz

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dagmar Kolb

Medical University of Graz

View shared research outputs
Researchain Logo
Decentralizing Knowledge