Thomas Østergaard Sørensen
Aalborg University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Thomas Østergaard Sørensen.
Communications in Mathematical Physics | 2002
Søren Fournais; Maria Hoffmann-Ostenhof; Thomas Hoffmann-Ostenhof; Thomas Østergaard Sørensen
We prove that the electron densities of electronic eigenfunctions of atoms and molecules are smooth away from the nuclei.
Arkiv för Matematik | 2004
Søren Fournais; Maria Hoffmann-Ostenhof; Thomas Hoffmann-Ostenhof; Thomas Østergaard Sørensen
We prove that the electronic densities of atomic and molecular eigenfunctions are real analytic inR3 away from the nuclei.
Annales Henri Poincaré | 2008
Anna Dall’Acqua; Thomas Østergaard Sørensen; Edgardo Stockmeyer
Abstract.We study the Hartree–Fock model for pseudorelativistic atoms, that is, atoms where the kinetic energy of the electrons is given by the pseudo-relativistic operator
Annales Henri Poincaré | 2007
Søren Fournais; Thomas Østergaard Sørensen; Maria Hoffmann-Ostenhof; Thomas Hoffmann-Ostenhof
Annales Henri Poincaré | 2008
Søren Fournais; Maria Hoffmann-Ostenhof; Thomas Østergaard Sørensen
\sqrt{(|{\bf p}|c)^{2} + (mc^{2})^{2}} - mc^{2}
Communications in Partial Differential Equations | 2010
Søren Fournais; Thomas Østergaard Sørensen
Annales Henri Poincaré | 2001
Maria Hoffmann-Ostenhof; Thomas Hoffmann-Ostenhof; Thomas Østergaard Sørensen
. We prove the existence of a Hartree–Fock minimizer, and prove regularity away from the nucleus and pointwise exponential decay of the corresponding orbitals.
Communications on Pure and Applied Mathematics | 2010
Jan Philip Solovej; Thomas Østergaard Sørensen; Wolfgang Spitzer
Abstract.We investigate regularity properties of molecular one-electron densities ρ near the nuclei. In particular we derive a representation
Communications in Mathematical Physics | 2009
Søren Fournais; Maria Hoffmann-Ostenhof; Thomas Hoffmann-Ostenhof; Thomas Østergaard Sørensen
Analysis & PDE | 2012
Anna Dall’Acqua; Søren Fournais; Thomas Østergaard Sørensen; Edgardo Stockmeyer
\rho(x) = e^{{\mathcal{F}}(x)}\mu(x)