Thomas P. C. Dorlo
Netherlands Cancer Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Thomas P. C. Dorlo.
Journal of Antimicrobial Chemotherapy | 2012
Thomas P. C. Dorlo; Manica Balasegaram; Jos H. Beijnen; Peter J. de Vries
Miltefosine is an alkylphosphocholine drug with demonstrated activity against various parasite species and cancer cells as well as some pathogenic bacteria and fungi. For 10 years it has been licensed in India for the treatment of visceral leishmaniasis (VL), a fatal neglected parasitic disease. It is the first and still the only oral drug that can be used to treat VL and cutaneous leishmaniasis (CL). The standard 28 day miltefosine monotherapy regimen is well tolerated, except for mild gastrointestinal side effects, although its teratogenic potential severely hampers its general use in the clinic and roll-out in national elimination programmes. The pharmacokinetics of miltefosine are mainly characterized by its long residence time in the body, resulting in extensive drug accumulation during treatment and long elimination half-lives. At the moment, different combination therapy strategies encompassing miltefosine are being tested in multiple controlled clinical trials in various geographical areas of endemicity, both in South Asia and East Africa. We here review the most salient pre-clinical and clinical pharmacological aspects of miltefosine, its mechanism of action against Leishmania parasites and other pathogens, and provide a systematic overview of the efficacy and safety data from all clinical trials of miltefosine, either alone or in combination, in the treatment of VL and CL.
Clinical Infectious Diseases | 2013
Suman Rijal; Bart Ostyn; Surendra Uranw; Keshav Rai; Narayan Raj Bhattarai; Thomas P. C. Dorlo; Jos H. Beijnen; Manu Vanaerschot; Saskia Decuypere; Subodh Sagar Dhakal; Murari Lal Das; Prahlad Karki; Rupa Singh; Marleen Boelaert; Jean-Claude Dujardin
BACKGROUND Miltefosine (MIL), the only oral drug for visceral leishmaniasis (VL), is currently the first-line therapy in the VL elimination program of the Indian subcontinent. Given the paucity of anti-VL drugs and the looming threat of resistance, there is an obvious need for close monitoring of clinical efficacy of MIL. METHODS In a cohort study of 120 VL patients treated with MIL in Nepal, we monitored the clinical outcomes up to 12 months after completion of therapy and explored the potential role of drug compliance, parasite drug resistance, and reinfection. RESULTS The initial cure rate was 95.8% (95% confidence interval [CI], 92.2-99.4) and the relapse rate at 6 and 12 months was 10.8% (95% CI, 5.2-16.4) and 20.0% (95% CI, 12.8-27.2) , respectively. No significant clinical risk factors of relapse apart from age <12 years were found. Parasite fingerprints of pretreatment and relapse bone marrow isolates within 8 patients were similar, suggesting that clinical relapses were not due to reinfection with a new strain. The mean promastigote MIL susceptibility (50% inhibitory concentration) of isolates from definite cures was similar to that of relapses. Although more tolerant strains were observed, parasite resistance, as currently measured, is thus not likely involved in MIL treatment failure. Moreover, MIL blood levels at the end of treatment were similar in cured and relapsed patients. CONCLUSIONS Relapse in one-fifth of the MIL-treated patients observed in our study is an alarming signal for the VL elimination campaign, urging for further review and cohort monitoring.
Antimicrobial Agents and Chemotherapy | 2008
Thomas P. C. Dorlo; Pieter P.A.M. van Thiel; Alwin D. R. Huitema; Ron J. Keizer; Henry J. C. de Vries; Jos H. Beijnen; Peter J. de Vries
ABSTRACT The pharmacokinetics of miltefosine in leishmaniasis patients are, to a great extent, unknown. We examined and characterized the pharmacokinetics of miltefosine in a group of patients with Old World (Leishmania major) cutaneous leishmaniasis. Miltefosine plasma concentrations were determined in samples taken during and up to 5 months after the end of treatment from 31 Dutch military personnel who contracted cutaneous leishmaniasis in Afghanistan and were treated with 150 mg miltefosine/day for 28 days. Samples were analyzed with a validated liquid chromatography-tandem mass spectrometry assay with a lower limit of quantification (LLOQ) of 4 ng/ml. Population pharmacokinetic modeling was performed with nonlinear mixed-effect modeling, using NONMEM. The pharmacokinetics of miltefosine could best be described by an open two-compartment disposition model, with a first elimination half-life of 7.05 days and a terminal elimination half-life of 30.9 days. The median concentration in the last week of treatment (days 22 to 28) was 30,800 ng/ml. The maximum duration of follow-up was 202 days after the start of treatment. All analyzed samples contained a concentration above the LLOQ. Miltefosine is eliminated from the body much slower than previously thought and is therefore still detectable in human plasma samples taken 5 to 6 months after the end of treatment. The presence of subtherapeutic miltefosine concentrations in the blood beyond 5 months after treatment might contribute to the selection of resistant parasites, and moreover, the measures for preventing the teratogenic risks of miltefosine treatment should be reconsidered.
Antimicrobial Agents and Chemotherapy | 2012
Thomas P. C. Dorlo; Alwin D. R. Huitema; Jos H. Beijnen; Peter J. de Vries
ABSTRACT Only anecdotal data are available on the pharmacokinetics (PK) of miltefosine in children suffering from visceral leishmaniasis (VL). While failure rates were higher in children with VL, steady-state concentrations appeared lower than those seen with adults. We hypothesized that the current linear dosage (in milligrams per kilogram of body weight) is too low for children and that a new dosing algorithm based on an appropriate body size model would result in an optimal exposure. A population PK analysis was performed on three historic pooled data sets, including Indian children, Indian adults, and European adults. Linear and allometric scaling of PK parameters by either body weight or fat-free mass (FFM) was evaluated for body size models. Based on the developed PK model, a dosing algorithm for miltefosine in children and adults was proposed and evaluated in silico. The population PK model employing allometric scaling fitted best to the pooled miltefosine data. Allometric scaling by FFM reduced between-subject variability, e.g., for drug clearance, from 49.6% to 32.1%. A new allometric miltefosine dosing algorithm was proposed. Exposure to miltefosine was lower in children than adults receiving 2.5 mg/kg/day: a Cmax of 18.8 μg/ml was reached by 90% of adults and 66.7% of children. The allometric daily dose resulted in similar levels of exposure to miltefosine for adults and children. The use of a new allometric dosing algorithm for miltefosine in VL patients results in optimal exposure to miltefosine in both adults and children and might improve clinical outcome in children.
Journal of Chromatography B | 2008
Thomas P. C. Dorlo; Michel J. X. Hillebrand; Hilde Rosing; Teunis A. Eggelte; Peter J. de Vries; Jos H. Beijnen
A sensitive and specific liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay for the quantification of miltefosine is presented. A 250 microL human EDTA plasma aliquot was spiked with miltefosine and extracted by a solid-phase extraction method. Separation was performed on a Gemini C18 column (150 mm x 2.0 mm I.D., 5 microm) using an alkaline eluent. Detection was performed by positive ion electrospray ionization followed by triple-quadrupole mass spectrometry. The assay has been validated for miltefosine from 4 to 2000 ng/mL using 250 microL human EDTA plasma samples. Results from the validation demonstrate that miltefosine can be accurately and precisely quantified in human plasma. At the lowest level, the intra-assay precision was lower than 10.7%, the inter-assay precision was 10.6% and accuracies were between 95.1 and 109%. This assay is successfully used in a clinical pharmacokinetic study with miltefosine.
PLOS Neglected Tropical Diseases | 2014
Eltahir Awad Gasim Khalil; Teklu Weldegebreal; Brima M. Younis; Raymond Omollo; Ahmed M. Musa; Workagegnehu Hailu; Abuzaid A. Abuzaid; Thomas P. C. Dorlo; Zewdu Hurissa; Sisay Yifru; William Haleke; Peter G. Smith; Sally Ellis; Manica Balasegaram; Ahmed M. Elhassan; Gerard J. Schoone; Monique Wasunna; Robert Kimutai; Tansy Edwards; Asrat Hailu
Background Anti-leishmanial drug regimens that include a single dose AmBisome® could be suitable for eastern African patients with symptomatic visceral leishmaniasis (VL) but the appropriate single dose is unknown. Methodology A multi-centre, open-label, non-inferiority, randomized controlled trial with an adaptive design, was conducted to compare the efficacy and safety of a single dose and multiple doses of AmBisome® for the treatment of VL in eastern Africa. The primary efficacy endpoint was definitive cure (DC) at 6 months. Symptomatic patients with parasitologically-confirmed, non-severe VL, received a single dose of AmBisome® 7.5 mg/kg body weight or multiple doses, 7 times 3 mg/kg on days 1–5, 14, and 21. If interim analyses, evaluated 30 days after the start of treatment following 40 or 80 patients, showed the single dose gave significantly poorer parasite clearance than multiple doses at the 5% significance level, the single dose was increased by 2·5 mg/kg. In a sub-set of patients, parasite clearance was measured by quantitative reverse transcriptase (qRT) PCR. Principal Findings The trial was terminated after the third interim analysis because of low efficacy of both regimens. Based on the intention-to-treat population, DC was 85% (95%CI 73–93%), 40% (95%CI 19–64%), and 58% (95%CI 41–73%) in patients treated with multiple doses (n = 63), and single doses of 7·5 (n = 21) or 10 mg/kg (n = 40), respectively. qRT-PCR suggested superior parasite clearance with multiple doses as early as day 3. Safety data accorded with the drug label. Conclusions The tested AmBisome® regimens would not be suitable for VL treatment across eastern Africa. An optimal single dose regimen was not identified. Trials Registration www.clinicaltrials.gov NCT00832208
Trials | 2011
Raymond Omollo; Neal Alexander; Tansy Edwards; Eltahir Awad Gasim Khalil; Brima M. Younis; Abuzaid A. Abuzaid; Monique Wasunna; Njenga Njoroge; Dedan Kinoti; George Kirigi; Thomas P. C. Dorlo; Sally Ellis; Manica Balasegaram; Ahmed M. Musa
BackgroundTreatment options for Visceral Leishmaniasis (VL) in East Africa are far from satisfactory due to cost, toxicity, prolonged treatment duration or emergence of parasite resistance. Hence there is a need to explore alternative treatment protocols such as miltefosine alone or in combinations including miltefosine, sodium stibogluconate (SSG) or liposomal amphotericin B. The aim of this trial is to identify regimen(s) which are sufficiently promising for future trials in East Africa.Methods/DesignA phase II randomized, parallel arm, open-labelled trial is being conducted to assess the efficacy of each of the three regimens: liposomal amphotericin B with SSG, Liposomal amphotericin B with miltefosine and miltefosine alone. The primary endpoint is cure at day 28 with secondary endpoint at day 210 (6 months). Initial cure is a single composite measure based on parasitologic evaluation (bone marrow, spleen or lymph node aspirate) and clinical assessment. Repeated interim analyses have been planned after recruitment of 15 patients in each arm with a maximum sample size of 63 for each. These will follow group-sequential methods (the triangular test) to identify when a regimen is inadequate (<75% efficacy) or adequate (>90% efficacy). We describe a method to ensure consistency of the sequential analysis of day 28 cure with the non-sequential analysis of day 210 cure.DiscussionA regimen with adequate efficacy would be a candidate for treatment of VL with reasonable costs. The design allows repeated testing throughout the trial recruitment period while maintaining good statistical properties (Type I & II error rates) and reducing the expected sample sizes.Trial RegistrationClinicalTrials.gov: NCT01067443
PLOS ONE | 2014
Bart Ostyn; Epco Hasker; Thomas P. C. Dorlo; Suman Rijal; Shyam Sundar; Jean-Claude Dujardin; Marleen Boelaert
Background High frequency of relapse in miltefosine-treated visceral leishmaniasis (VL) patients in India and Nepal followed up for twelve months. Objective To identify epidemiological and clinical risk factors for relapse of VL in patients recently treated with standard dosing of miltefosine in India and Nepal. Design Prospective observational study in three Primary Health Centers and one reference center in Muzaffarpur district, Bihar, India; and two zonal hospitals and a university hospital in South-east Nepal; records of all consenting patients diagnosed with VL and treated with miltefosine according to the current treatment guidelines of the Kala azar elimination program between 2009 and 2011. Results We compared the clinical records of 78 cases of relapse with those of 775 patients who had no record of subsequent relapse. Relapse was 2 times more common amongst male patients (IRR 2.14, 95% CI 1.27–3.61), and 2 to 3 times more frequent in the age groups below 15 compared to the over 25 year olds (age 10 to 14: IRR 2.53; 95% CI 1.37–4.65 and Age 2 to 9: IRR 3.19; 95% CI 1.77–5.77). History of earlier VL episodes, or specific clinical features at time of diagnosis such as duration of symptoms or spleen size were no predictors of relapse. Conclusions Young age and male gender were associated with increased risk of VL relapse after miltefosine, suggesting that the mechanism of relapse is mainly host-related i.e. immunological factors and/or drug exposure (pharmacokinetics). The observed decrease in efficacy of miltefosine may be explained by the inclusion of younger patients compared to the earlier clinical trials, rather than by a decreased susceptibility of the parasite to miltefosine. Our findings highlight the importance of proper clinical trials in children, including pharmacokinetics, to determine the safety, efficacy, drug exposure and therapeutic response of new drugs in this age group.
Journal of Antimicrobial Chemotherapy | 2012
Pauline Byakika-Kibwika; Mohammed Lamorde; Violet Okaba-Kayom; Harriet Mayanja-Kizza; Elly Katabira; Warunee Hanpithakpong; Nadine G. Pakker; Thomas P. C. Dorlo; Joel Tarning; Niklas Lindegardh; Peter J. de Vries; David Back; Saye Khoo; Concepta Merry
Background Treatment of HIV/malaria-coinfected patients with antiretroviral therapy (ART) and artemisinin-based combination therapy has potential for drug interactions. We investigated the pharmacokinetics of artemether, dihydroartemisinin and lumefantrine after administration of a single dose of 80/480 mg of artemether/lumefantrine to HIV-infected adults, taken with and without lopinavir/ritonavir. Methods A two-arm parallel study of 13 HIV-infected ART-naive adults and 16 HIV-infected adults stable on 400/100 mg of lopinavir/ritonavir plus two nucleoside reverse transcriptase inhibitors (ClinicalTrials.gov, NCT 00619944). Each participant received a single dose of 80/480 mg of artemether/lumefantrine under continuous cardiac function monitoring. Plasma concentrations of artemether, dihydroartemisinin and lumefantrine were measured. Results Co-administration of artemether/lumefantrine with lopinavir/ritonavir significantly reduced artemether maximum concentration (Cmax) and area under the concentration–time curve (AUC) [median (range): 112 (20–362) versus 56 (17–236) ng/mL, P = 0.03; and 264 (92–1129) versus 151 (38–606) ng · h/mL, P < 0.01]. Dihydroartemisinin Cmax and AUC were not affected [66 (10–111) versus 73 (31–224) ng/mL, P = 0.55; and 213 (68–343) versus 175 (118–262) ng · h/mL P = 0.27]. Lumefantrine Cmax and AUC increased during co-administration [2532 (1071–5957) versus 7097 (2396–9462) ng/mL, P < 0.01; and 41 119 (12 850–125 200) versus 199 678 (71 205–251 015) ng · h/mL, P < 0.01]. Conclusions Co-administration of artemether/lumefantrine with lopinavir/ritonavir significantly increases lumefantrine exposure, but decreases artemether exposure. Population pharmacokinetic and pharmacodynamic trials will be highly valuable in evaluating the clinical significance of this interaction and determining whether dosage modifications are indicated.
PLOS Neglected Tropical Diseases | 2012
Thomas P. C. Dorlo; Teunis A. Eggelte; Gerard J. Schoone; Peter J. de Vries; Jos H. Beijnen
Proper chemotherapy is pivotal in the management of visceral leishmaniasis (VL, also known as kala-azar); without an effective treatment this neglected parasitic disease is inevitably fatal [1]. Nevertheless, the few new and safer but more expensive treatment options that were developed in the past decade (i.e., liposomal amphotericin B and miltefosine) remain largely out of reach of the affected rural population who are most in need, mainly the poorest of the poor [2]–[4]. Miltefosine, an alkylphosphocholine drug, is an essential drug in the management of VL as it is the first effective oral treatment option with a reasonable safety profile [5]. Oral miltefosine allows the treatment of VL patients without an extended period of hospital admission and thus puts fewer demands on both patients and health services [6], [7]. Miltefosine is currently preferred for implementation in national VL elimination programmes [8], although the burden of high treatment costs incites the exploration of possibilities for a generic miltefosine product [9]. Unfortunately, the precarious position of VL patients was recently jeopardized as patients in Bangladesh were confronted with a new threat: the emergence of a new miltefosine product containing no active pharmaceutical ingredient [10], [11].