Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thomas Posch is active.

Publication


Featured researches published by Thomas Posch.


Applied and Environmental Microbiology | 2003

An Improved Protocol for Quantification of Freshwater Actinobacteria by Fluorescence In Situ Hybridization

Raju Sekar; Annelie Pernthaler; Jakob Pernthaler; Falk Warnecke; Thomas Posch; Rudolf Amann

ABSTRACT We tested a previously described protocol for fluorescence in situ hybridization of marine bacterioplankton with horseradish peroxidase-labeled rRNA-targeted oligonucleotide probes and catalyzed reporter deposition (CARD-FISH) in plankton samples from different lakes. The fraction of Bacteria detected by CARD-FISH was significantly lower than after FISH with fluorescently monolabeled probes. In particular, the abundances of aquatic Actinobacteria were significantly underestimated. We thus developed a combined fixation and permeabilization protocol for CARD-FISH of freshwater samples. Enzymatic pretreatment of fixed cells was optimized for the controlled digestion of gram-positive cell walls without causing overall cell loss. Incubations with high concentrations of lysozyme (10 mg ml−1) followed by achromopeptidase (60 U ml−1) successfully permeabilized cell walls of Actinobacteria for subsequent CARD-FISH both in enrichment cultures and environmental samples. Between 72 and >99% (mean, 86%) of all Bacteria could be visualized with the improved assay in surface waters of four lakes. For freshwater samples, our method is thus superior to the CARD-FISH protocol for marine Bacteria (mean, 55%) and to FISH with directly fluorochrome labeled probes (mean, 67%). Actinobacterial abundances in the studied systems, as detected by the optimized protocol, ranged from 32 to >55% (mean, 45%). Our findings confirm that members of this lineage are among the numerically most important Bacteria of freshwater picoplankton.


Applied and Environmental Microbiology | 2001

Predator-Specific Enrichment of Actinobacteria from a Cosmopolitan Freshwater Clade in Mixed Continuous Culture

Jakob Pernthaler; Thomas Posch; Karel Šimek; Jaroslav Vrba; Annelie Pernthaler; Frank Oliver Glöckner; Ulrich Nübel; Roland Psenner; Rudolf Amann

ABSTRACT We investigated whether individual populations of freshwater bacteria in mixed experimental communities may exhibit specific responses to the presence of different bacterivorous protists. In two successive experiments, a two-stage continuous cultivation system was inoculated with nonaxenic batch cultures of the cryptophyteCryptomonas sp. Algal exudates provided the sole source of organic carbon for growth of the accompanying microflora. The dynamics of several 16S rRNA-defined bacterial populations were followed in the experimental communities. Although the composition and stability of the two microbial communities differed, numerous members of the first assemblage could again be detected during the second experiment. The introduction of a size-selectively feeding mixotrophic nanoflagellate (Ochromonas sp.) always resulted in an immediate bloom of a single phylotype population of members of the classActinobacteria (Ac1). These bacteria were phylogenetically affiliated with an uncultured lineage of gram-positive bacteria that have been found in freshwater habitats only. The Ac1 cells were close to the average size of freshwater bacterioplankton and significantly smaller than any of the other experimental community members. In contrast, no increase of the Ac1 population was observed in vessels exposed to the bacterivorous ciliate Cyclidium glaucoma. However, when the Ochromonas sp. was added after the establishment of C. glaucoma, the proportion of population Ac1 within the microbial community rapidly increased. Populations of a beta proteobacterial phylotype related to an Aquabacteriumsp. decreased relative to the total bacterial communities following the addition of either predator, albeit to different extents. The community structure of pelagic microbial assemblages can therefore be influenced by the taxonomic composition of the predator community.


The ISME Journal | 2011

Seasonal bloom dynamics and ecophysiology of the freshwater sister clade of SAR11 bacteria ‘that rule the waves’ (LD12)

Michaela M. Salcher; Jakob Pernthaler; Thomas Posch

Alphaproteobacteria are common members of marine bacterioplankton assemblages, but are believed to be rare in lacustrine systems. However, uncultured Alphaproteobacteria of the freshwater LD12 lineage form a tight monophyletic sister group with the numerically dominant bacteria in marine epipelagic waters, the SAR11 clade or genus Pelagibacter. Comparative rRNA sequence analysis reveals a global occurrence of LD12 bacteria in freshwater systems. The association of genotypic subclades with single-study systems moreover suggests a regional diversification. LD12 bacteria exhibit distinct and annually recurring spatio-temporal distribution patterns in prealpine lakes, as assessed by seasonally resolved vertical profiling and high-throughput cell counting. During the summer months, these ultramicrobacteria can form cell densities in the surface (epilimnetic) water layers that are comparable to those of their marine counterparts (>5 × 108 cells per l). LD12 bacteria had a pronounced preference for glutamine and glutamate over 7 other amino acids in situ, and they exhibited substantially higher uptake of these two substrates (and glycine) than the microbial assemblage in general. In addition, members of LD12 were also able to exploit other monomeric sources of organic carbon such as glucose, fructose or acetate. LD12 seemed to follow an oligotrophic lifestyle with slow but efficient uptake already at low substrate concentrations. Thus, LD12 bacteria do not only share phenotypic and metabolic traits with Pelagibacter, but also seem to thrive in the analogous spatiotemporal niche in freshwaters. The two groups together form one of the rare monophyletic lineages of ultramicrobacteria that have successfully traversed the barrier between marine and freshwater habitats.


Environmental Microbiology | 2008

Spatio-temporal niche separation of planktonic Betaproteobacteria in an oligo-mesotrophic lake.

Michaela M. Salcher; Jakob Pernthaler; Michael Zeder; Roland Psenner; Thomas Posch

We investigated the diversity of planktonic Betaproteobacteria and the seasonal population changes of betaproteobacterial taxa in an oligo-mesotrophic lake (Piburger See, Austria). Focus was put on the vertical distribution of the investigated populations and on differences between their respective cell fractions with apparent amino acid incorporation. On average, 66% of betaproteobacterial cells and 73% of their diversity could be attributed to four clades within three lineages that were further analysed by fluorescence in situ hybridization. The numbers of bacteria from the R-BT subclade of the beta I lineage and from the PnecB subgroup of the beta II lineage were rather constant throughout the water column. In contrast, members of another subgroup of beta II (PnecC) and bacteria related to Methylophilus (beta IV) were particularly numerous in the oxygen-depleted zone. In general, only moderate seasonal changes in abundance were observed in the upper water layers, whereas there was a clear relationship between decreasing oxygen levels and the rise of bacteria from the PnecC and beta IV clades in deeper strata. On average, almost 80% of beta I bacteria, but < 15% of cells from the beta IV clade, showed amino acid incorporation. Our results suggest that the studied populations occupy distinct vertical and ecophysiological niches in Piburger See.


The ISME Journal | 2013

In situ substrate preferences of abundant bacterioplankton populations in a prealpine freshwater lake

Michaela M. Salcher; Thomas Posch; Jakob Pernthaler

The substrate partitioning of sympatric populations of freshwater bacterioplankton was studied via microautoradiography and fluorescence in situ hybridization. Fourteen radiolabeled tracers were used to assess microbial acquisition spectra of low-molecular-weight (LMW) organic compounds. The most abundant group, ac1 Actinobacteria, were highly active in leucine, thymidine and glucose assimilation, whereas Alphaproteobacteria from the LD12 lineage (the freshwater sister clade of SAR11) only weakly incorporated these tracers, but exhibited a distinct preference for glutamine and glutamate. Different Bacteroidetes showed contrasting uptake patterns: Flavobacteriales did not incorporate significant amounts of any LMW compound, and Cyclobacteriaceae were clearly specialized on leucine, glucose and arginine. Betaproteobacteria represented the most active and versatile bacterioplankton fraction and >90% of them could be assigned to eight species- to genus-like populations with contrasting substrate specialization. Limnohabitans sp. were the most abundant and active Betaproteobacteria, incorporating almost all tracers. While three closely related betaproteobacterial populations substantially differed in their uptake spectra, two more distantly related lineages had very similar preferences, and one population did not incorporate any tracer. The dominant phototrophic microorganism, the filamentous cyanobacterium Planktothrix rubescens, assimilated several substrates, whereas other (pico)cyanobacteria had no heterotrophic activity. The variable extent of specialization by the studied bacterial taxa on subsets of LMW compounds contrasts theoretical considerations about non-selective microbial substrate assimilation at oligotrophic conditions. This physiological niche separation might be one explanation for the coexistence of freshwater bacterioplankton species in a seemingly uniform environment.


Hydrobiologia | 1997

Seasonal successions and trophic relations between phytoplankton, zooplankton, ciliate and bacteria in a hypertrophic shallow lake in Vienna, Austria

Jutta Mayer; Martin T. Dokulil; Monika Salbrechter; Martina Berger; Thomas Posch; Gerald Pfister; Alexander K. T. Kirschner; Branko Velimirov; Andrea Steitz; Til Ulbricht

Alte Donau nowadays is an eutrophic urban lake within the cityofVienna. Increasing nutrient concentrations and massive bloomsofcyanobacteria mainly caused by Limnothrix redekei VanGoorand Cylindrospermopsis raciborskii (Wolsz.) SeenayyaetSubba Raju were recently registered. As a consequence Secchidepthwas significantly reduced especially during the summer season(minimum: 0.25 m). An investigation including water chemistry,phytoplankton, macrophytes, and sediment was initiated in 1993andextended to metazooplankton, ciliates and bacteria in 1994.Thefirst half of the year 1994 was characterised by relativelyclearwater and a high diversity of the phytoplankton compositiondue toflushing of the lake with water of better quality by the endof1993. Ciliates and metazooplankton held about 10% of thetotalbiomass of all the investigated trophic levels. The vanishingofthe remaining macrophytes enlarged the nutrient supply duringsummer 1994 and favoured the development of cyanobacteria. Thehighwater temperatures which excluded certain zooplankton species,andthe inedibility of the filaments further increased thedominance ofcyanobacteria. In November, when the algal bloom finallyceased,the highest bacterial numbers of the investigation periodoccurred.Thereafter, other algal groups, bacteria and metazooplanktongainedmore importance.Interactions are possible because of close overlap in spaceandtime due to the turbulent mixed conditions of the water bodyandthe change from the macrophyte dominated to the algaldominatedstable state. Planned restoration measures must aim tore-establishthe previous macrophyte dominated clear-waterstage.


Water Research | 2013

Activity of metazoa governs biofilm structure formation and enhances permeate flux during Gravity-Driven Membrane (GDM) filtration.

Nicolas Derlon; Nicolas Koch; Bettina Eugster; Thomas Posch; Jakob Pernthaler; Wouter Pronk; Eberhard Morgenroth

The impact of different feed waters in terms of eukaryotic populations and organic carbon content on the biofilm structure formation and permeate flux during Gravity-Driven Membrane (GDM) filtration was investigated in this study. GDM filtration was performed at ultra-low pressure (65 mbar) in dead-end mode without control of the biofilm formation. Different feed waters were tested (River water, pre-treated river water, lake water, and tap water) and varied with regard to their organic substrate content and their predator community. River water was manipulated either by chemically inhibiting all eukaryotes or by filtering out macrozoobenthos (metazoan organisms). The structure of the biofilm was characterized at the meso- and micro-scale using Optical Coherence Tomography (OCT) and Confocal Laser Scanning Microscopy (CLSM), respectively. Based on Total Organic Carbon (TOC) measurements, the river waters provided the highest potential for bacterial growth whereas tap water had the lowest. An increasing content in soluble and particulate organic substrate resulted in increasing biofilm accumulation on membrane surface. However, enhanced biofilm accumulation did not result in lower flux values and permeate flux was mainly influenced by the structure of the biofilm. Metazoan organisms (in particular nematodes and oligochaetes) built-up protective habitats, which resulted in the formation of open and spatially heterogeneous biofilms composed of biomass patches. In the absence of predation by metazoan organisms, a flat and compact biofilm developed. It is concluded that the activity of metazoan organisms in natural river water and its impact on biofilm structure balances the detrimental effect of a high biofilm accumulation, thus allowing for a broader application of GDM filtration. Finally, our results suggest that for surface waters with high particulate organic carbon (POC) content, the use of worms is suitable to enhance POC removal before ultrafiltration units.


Microbial Ecology | 2001

Size Selective Feeding in Cyclidium glaucoma (Ciliophora, Scuticociliatida) and Its Effects on Bacterial Community Structure: A Study from a Continuous Cultivation System

Thomas Posch; Jan Jezbera; Jaroslav Vrba; Karel Šimek; Jakob Pernthaler; Stefan Andreatta; Bettina Sonntag

Three aspects of size selective feeding by the scuticociliate Cyclidium glaucoma were studied in continuous cultivation systems. Firstly, grazing-induced changes in abundance, biomass, and size structure of a bacterial community were investigated. Secondly, we studied possible grazing-protection mechanisms of bacteria as a response to permanent presence of the predator. And finally, we were looking for potential feedback mechanisms within this predator-prey relationship, i.e., how the ciliate population reacted to a changed, more grazing-protected bacterial community. The first stage of the cultivation system consisted of the alga Cryptomonas sp. and the accompanying mixed bacterial community. These organisms were transferred to two second stage vessels, a control stage without ciliates and a second one inoculated with C. glaucoma. After the first week, the abundance of bacteria in the latter decreased by 60% and remained stable until the end of the experiment (65 d), whereas bacterial biomass was less affected (393 mg C L-1 during days 0-7, 281 mg C L-1 afterwards). The mean bacterial cell volume doubled from 0.089 mm3 to 0.167 mm3, which was mainly due to increasing cell widths. During the whole investigation period formation of colonies or filaments was not observed, but we found a clear feedback of ciliates on bacterial size. An increase in bacterial cell volume was always followed by a decline of the predator population, resulting in a yet undescribed type of microbial predator-prey relation. Literature and our own data on the optimal food size range grazed by C. glaucoma showed that bacterial cell width rather than length was responsible for that observed phenomenon. Finally, we suggest that uptake rates of spherical latex beads give only limited information on truly ingestible prey volumes and that prey geometry should be considered in future studies on size selective feeding of protists.


IEEE Robotics & Automation Magazine | 2012

Autonomous Inland Water Monitoring: Design and Application of a Surface Vessel

Gregory Hitz; François Pomerleau; Marie-Ève Garneau; Cédric Pradalier; Thomas Posch; Jakob Pernthaler; Ronald Y. Siegwart

This article presents a novel autonomous surface vessel (ASV) that was designed and manufactured specifically for the monitoring of water resources, resources that are not only constantly drained but also face the growing threat of mass proliferation (bloom) of noxious cyanobacteria. On one hand, the distribution of these blooms in a given water body requires a surveillance of biological data at high spatial resolution on both vertical and horizontal axes, whereas on the other hand, the understanding of the temporal evolution of the cyanobacteria necessitates repeated sampling at the same location. Therefore, our ASV was designed to combine the ability to take measurements within a range of depths, with its custom-made winch, and accurate localization provided by the global positioning system (GPS), without the need for static installations. This article first describes the ASV conception, and then the results of extended field tests on the waypoint navigation mode are discussed. Finally, the first results of a sampling campaign for monitoring algal blooms in Lake Zurich are presented. This work constitutes advances in the deployment of mobile measurement platforms for environmental monitoring in lacustrine environments. Furthermore, it investigates the application of a single ASV to capture both spatial and temporal dynamics of harmful cyanobacterial blooms in lakes. Combining surface mobility with depth measurements within a single robot allows fast deployments in remote location, which is cost efficient for lake sampling. This reduces the need for fixed installations, which can be impossible in recreational areas. The high-resolution sampling of lakes will contribute to understand and predict the occurrence of harmful cyanobacterial blooms for a better management of water resources.


The ISME Journal | 2015

The ecology of pelagic freshwater methylotrophs assessed by a high-resolution monitoring and isolation campaign

Michaela M. Salcher; Stefan Neuenschwander; Thomas Posch; Jakob Pernthaler

Methylotrophic planktonic bacteria fulfill a particular role in the carbon cycle of lakes via the turnover of single-carbon compounds. We studied two planktonic freshwater lineages (LD28 and PRD01a001B) affiliated with Methylophilaceae (Betaproteobacteria) in Lake Zurich, Switzerland, by a combination of molecular and cultivation-based approaches. Their spatio-temporal distribution was monitored at high resolution (n=992 samples) for 4 consecutive years. LD28 methylotrophs constituted up to 11 × 107 cells l−1 with pronounced peaks in spring and autumn–winter, concomitant with blooms of primary producers. They were rare in the warm water layers during summer but abundant in the cold hypolimnion, hinting at psychrophilic growth. Members of the PRD01a001B lineage were generally less abundant but also had maxima in spring. More than 120 axenic strains from these so far uncultivated lineages were isolated from the pelagic zone by dilution to extinction. Phylogenetic analysis separated isolates into two distinct genotypes. Isolates grew slowly (μmax=0.4 d−1), were of conspicuously small size, and were indeed psychrophilic, with higher growth yield at low temperatures. Growth was enhanced upon addition of methanol and methylamine to sterile lake water. Genomic analyses of two strains confirmed a methylotrophic lifestyle with a reduced set of genes involved in C1 metabolism. The very small and streamlined genomes (1.36 and 1.75 Mb) shared several pathways with the marine OM43 lineage. As the closest described taxa (Methylotenera sp.) are only distantly related to either set of isolates, we propose a new genus with two species, that is, ‘Candidatus Methylopumilus planktonicus’ (LD28) and ‘Candidatus Methylopumilus turicensis’ (PRD01a001B).

Collaboration


Dive into the Thomas Posch's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Birgit Mindl

University of Innsbruck

View shared research outputs
Researchain Logo
Decentralizing Knowledge