Thomas R. Laws
Defence Science and Technology Laboratory
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Thomas R. Laws.
Open Biology | 2013
Jon Cuccui; Rebecca M. Thomas; Madeleine G. Moule; Riccardo V. D'Elia; Thomas R. Laws; Dominic C. Mills; Diane Williamson; Timothy P. Atkins; Joann L. Prior; Brendan W. Wren
Glycoconjugate-based vaccines have proved to be effective at producing long-lasting protection against numerous pathogens. Here, we describe the application of bacterial protein glycan coupling technology (PGCT) to generate a novel recombinant glycoconjugate vaccine. We demonstrate the conjugation of the Francisella tularensis O-antigen to the Pseudomonas aeruginosa carrier protein exotoxin A using the Campylobacter jejuni PglB oligosaccharyltransferase. The resultant recombinant F. tularensis glycoconjugate vaccine is expressed in Escherichia coli where yields of 3 mg l−1 of culture were routinely produced in a single-step purification process. Vaccination of BALB/c mice with the purified glycoconjugate boosted IgG levels and significantly increased the time to death upon subsequent challenge with F. tularensis subsp. holarctica. PGCT allows different polysaccharide and protein combinations to be produced recombinantly and could be easily applicable for the production of diverse glycoconjugate vaccines.
Microbes and Infection | 2010
Thomas R. Laws; Martin S. Davey; Richard W. Titball; Roman A. Lukaszewski
In this paper we evaluate the role of neutrophils in pneumonic plague. Splenic neutrophils from naïve BALB/c mice were found to reduce numbers of culturable Yersinia pestis strain GB in suspension. A murine, BALB/c, intranasal model of pneumonic plague was used in conjunction with in vivo neutrophil ablation, using the GR-1 antibody. This treatment reduced neutrophil numbers without affecting other leukocyte numbers. Neutrophil ablated mice exhibited increased bacterial colonisation of the lung 24h post infection. Furthermore, exposure of Y. pestis to human neutrophils resulted in a 5-fold reduction in the number of viable bacterial cells, whereas, PBMCs had no effect.
Genome Biology | 2017
Xuan Liu; Emily Speranza; César Muñoz-Fontela; Sam Haldenby; Natasha Y. Rickett; Isabel García-Dorival; Yongxiang Fang; Yper Hall; Elsa-Gayle Zekeng; Anja Lüdtke; Dong Xia; Romy Kerber; Ralf Krumkamp; Sophie Duraffour; Daouda Sissoko; John Kenny; Nichola Rockliffe; E. Diane Williamson; Thomas R. Laws; Magassouba N’Faly; David A. Matthews; Stephan Günther; Andrew R. Cossins; Armand Sprecher; John H. Connor; Miles W. Carroll; Julian A. Hiscox
BackgroundIn 2014, Western Africa experienced an unanticipated explosion of Ebola virus infections. What distinguishes fatal from non-fatal outcomes remains largely unknown, yet is key to optimising personalised treatment strategies. We used transcriptome data for peripheral blood taken from infected and convalescent recovering patients to identify early stage host factors that are associated with acute illness and those that differentiate patient survival from fatality.ResultsThe data demonstrate that individuals who succumbed to the disease show stronger upregulation of interferon signalling and acute phase responses compared to survivors during the acute phase of infection. Particularly notable is the strong upregulation of albumin and fibrinogen genes, which suggest significant liver pathology. Cell subtype prediction using messenger RNA expression patterns indicated that NK-cell populations increase in patients who survive infection. By selecting genes whose expression properties discriminated between fatal cases and survivors, we identify a small panel of responding genes that act as strong predictors of patient outcome, independent of viral load.ConclusionsTranscriptomic analysis of the host response to pathogen infection using blood samples taken during an outbreak situation can provide multiple levels of information on both disease state and mechanisms of pathogenesis. Host biomarkers were identified that provide high predictive value under conditions where other predictors, such as viral load, are poor prognostic indicators. The data suggested that rapid analysis of the host response to infection in an outbreak situation can provide valuable information to guide an understanding of disease outcome and mechanisms of disease.
Clinical and Vaccine Immunology | 2013
Andrew E. Scott; Thomas R. Laws; Riccardo V. D'Elia; Margaret G. M. Stokes; Tannistha Nandi; E. Diane Williamson; Patrick Tan; Joann L. Prior; Timothy P. Atkins
ABSTRACT Melioidosis is a severe infectious disease caused by Burkholderia pseudomallei. It is highly resistant to antibiotic treatment, and there is currently no licensed vaccine. Burkholderia thailandensis is a close relative of Burkholderia pseudomallei but is essentially avirulent in mammals. In this report, we detail the protective efficacy of immunization with live B. thailandensis E555, a strain which has been shown to express an antigenic capsule similar to that of B. pseudomallei. Immunization with E555 induced significant protection against a lethal intraperitoneal B. pseudomallei challenge in a mouse model of infection, with no mice succumbing to infection over the course of the study, even with challenges of up to 6,000 median lethal doses. By comparison, mice immunized with B. thailandensis not expressing a B. pseudomallei-like capsule had significantly decreased levels of protection. E555-immunized mice had significantly higher levels of IgG than mice immunized with noncapsulated B. thailandensis, and these antibody responses were primarily directed against the capsule.
Applied and Environmental Microbiology | 2011
Richard J. Thomas; Daniel Webber; Rebecca Hopkins; Andrew Frost; Thomas R. Laws; Pramukh N. Jayasekera; Timothy P. Atkins
ABSTRACT This study aimed to provide data on the survival and site of damage of Escherichia coli cells following aerosolization using two different techniques, nebulization and flow focusing. Four metabolic stains were assessed for their ability to detect respiratory activities and membrane homeostasis in aerosolized E. coli cells. The degree of sublethal injury increased significantly over the 10-min period of aerosolization in E. coli cells aerosolized by using the Collison nebulizer, reaching up to 99.9% of the population. In contrast, a significantly lower proportion of the population was sublethally damaged during aerosolization using the flow-focusing aerosol generator (FFAG). Concomitantly, loss of membrane homeostasis increased at a higher rate in nebulized cells (68 to 71%) than in those aerosolized by using the FFAG (32 to 34%). The activities of respiratory enzymes decreased at increased rates in nebulized cells (27 to 37%) compared to the rates of decrease in cells aerosolized by using the FFAG (59 to 61%). The results indicate that the physiology of an aerosolized bacterium is linked to the method of aerosol generation and may affect the interpretation of a range of aerobiological phenomenon.
Applied and Environmental Microbiology | 2016
Fenella D. Halstead; Joanne E. Thwaite; Rebecca Burt; Thomas R. Laws; Marina Raguse; Ralf Moeller; Mark A. Webber
ABSTRACT The blue wavelengths within the visible light spectrum are intrinisically antimicrobial and can photodynamically inactivate the cells of a wide spectrum of bacteria (Gram positive and negative) and fungi. Furthermore, blue light is equally effective against both drug-sensitive and -resistant members of target species and is less detrimental to mammalian cells than is UV radiation. Blue light is currently used for treating acnes vulgaris and Helicobacter pylori infections; the utility for decontamination and treatment of wound infections is in its infancy. Furthermore, limited studies have been performed on bacterial biofilms, the key growth mode of bacteria involved in clinical infections. Here we report the findings of a multicenter in vitro study performed to assess the antimicrobial activity of 400-nm blue light against bacteria in both planktonic and biofilm growth modes. Blue light was tested against a panel of 34 bacterial isolates (clinical and type strains) comprising Acinetobacter baumannii, Enterobacter cloacae, Stenotrophomonas maltophilia, Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus, Enterococcus faecium, Klebsiella pneumoniae, and Elizabethkingia meningoseptica. All planktonic-phase bacteria were susceptible to blue light treatment, with the majority (71%) demonstrating a ≥5-log10 decrease in viability after 15 to 30 min of exposure (54 J/cm2 to 108 J/cm2). Bacterial biofilms were also highly susceptible to blue light, with significant reduction in seeding observed for all isolates at all levels of exposure. These results warrant further investigation of blue light as a novel decontamination strategy for the nosocomial environment, as well as additional wider decontamination applications. IMPORTANCE Blue light shows great promise as a novel decontamination strategy for the nosocomial environment, as well as additional wider decontamination applications (e.g., wound closure during surgery). This warrants further investigation.
International Journal of Antimicrobial Agents | 2013
Kay B. Barnes; Jackie Steward; Joanne E. Thwaite; M. Stephen Lever; Carwyn Davies; Stuart J. Armstrong; Thomas R. Laws; Neil Roughley; Sarah V. Harding; Timothy P. Atkins; Andrew J. H. Simpson; Helen S. Atkins
Burkholderia pseudomallei is the causative agent of the disease melioidosis, which is prevalent in tropical countries and is intractable to a number of antibiotics. In this study, the antibiotic co-trimoxazole (trimethoprim/sulfamethoxazole) was assessed for the post-exposure prophylaxis of experimental infection in mice with B. pseudomallei and its close phylogenetic relative Burkholderia mallei, the causative agent of glanders. Co-trimoxazole was effective against an inhalational infection with B. pseudomallei or B. mallei. However, oral co-trimoxazole delivered twice daily did not eradicate infection when administered from 6h post exposure for 14 days or 21 days, since infected and antibiotic-treated mice succumbed to infection following relapse or immunosuppression. These data highlight the utility of co-trimoxazole for prophylaxis both of B. pseudomallei and B. mallei and the need for new approaches for the treatment of persistent bacterial infection.
International Journal of Experimental Pathology | 2013
Sophie J. Smither; Michelle Nelson; Lin Eastaugh; Thomas R. Laws; Christopher Taylor; Simon A. Smith; F.J. Salguero; Mark S. Lever
Marburg virus causes a highly infectious and lethal haemorrhagic fever in primates and may be exploited as a potential biothreat pathogen. To combat the infection and threat of Marburg haemorrhagic fever, there is a need to develop and license appropriate medical countermeasures. To determine whether the common marmoset (Callithrix jacchus) would be an appropriate model to assess therapies against Marburg haemorrhagic fever, initial susceptibility, lethality and pathogenesis studies were performed. Low doses of virus, between 4 and 28 TCID50, were sufficient to cause a lethal, reproducible infection. Animals became febrile between days 5 and 6, maintaining a high fever before succumbing to disease between 8 and 11 days postchallenge. Typical signs of Marburg virus infection were observed including haemorrhaging and a transient rash. In pathogenesis studies, virus was isolated from the animals’ lungs from day 3 postchallenge and from the liver, spleen and blood from day 5 postchallenge. Early signs of histopathology were apparent in the kidney and liver from day 3. The most striking features were observed in animals exhibiting severe clinical signs, which included high viral titres in all organs, with the highest levels in the blood, increased levels in liver function enzymes and blood clotting times, decreased levels in platelets, multifocal moderate‐to‐severe hepatitis and perivascular oedema.
Virology | 2014
Lyn M. O'Brien; Margaret G. M. Stokes; Stephen G. Lonsdale; David R. Maslowski; Sophie J. Smither; Mark S. Lever; Thomas R. Laws; Stuart D. Perkins
The resistance of adult immunocompetent mice to infection with ebolaviruses has led to the development of alternative small animal models that utilise immunodeficient mice, for example the interferon α/β receptor knock-out mouse (IFNR(-/-)). IFNR(-/-) mice have been shown to be susceptible to infection with ebolaviruses by multiple routes but it is not known if this murine model is suitable for testing therapeutics that rely on the generation of an immune response for efficacy. We have tested recombinant adenovirus vectors for their ability to protect IFNR(-/-) mice from challenge with Ebola virus and have analysed the humoral response generated after immunisation. The recombinant vaccines elicited good levels of protection in the knock-out mouse and the antibody response in IFNR(-/-) mice was similar to that observed in vaccinated wild-type mice. These results indicate that the IFNR(-/-) mouse is a relevant small animal model for studying ebolavirus-specific therapeutics.
Letters in Applied Microbiology | 2009
Joanne E. Thwaite; Thomas R. Laws; Timothy P. Atkins; Helen S. Atkins
Aims: The genus Bacillus encompasses a wide range of species which display varying pathogenic abilities. The hydrophobicity of a range of Bacillus species was determined to evaluate the correlation between bacterial hydrophobicity and pathogenicity.