Thomas R. Pisanic
Johns Hopkins University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Thomas R. Pisanic.
Advanced Drug Delivery Reviews | 2009
Veronica I. Shubayev; Thomas R. Pisanic; Sungho Jin
Engineered magnetic nanoparticles (MNPs) represent a cutting-edge tool in medicine because they can be simultaneously functionalized and guided by a magnetic field. Use of MNPs has advanced magnetic resonance imaging (MRI), guided drug and gene delivery, magnetic hyperthermia cancer therapy, tissue engineering, cell tracking and bioseparation. Integrative therapeutic and diagnostic (i.e., theragnostic) applications have emerged with MNP use, such as MRI-guided cell replacement therapy or MRI-based imaging of cancer-specific gene delivery. However, mounting evidence suggests that certain properties of nanoparticles (e.g., enhanced reactive area, ability to cross cell and tissue barriers, resistance to biodegradation) amplify their cytotoxic potential relative to molecular or bulk counterparts. Oxidative stress, a 3-tier paradigm of nanotoxicity, manifests in activation of reactive oxygen species (ROS) (tier I), followed by a proinflammatory response (tier II) and DNA damage leading to cellular apoptosis and mutagenesis (tier III). Invivo administered MNPs are quickly challenged by macrophages of the reticuloendothelial system (RES), resulting in not only neutralization of potential MNP toxicity but also reduced circulation time necessary for MNP efficacy. We discuss the role of MNP size, composition and surface chemistry in their intracellular uptake, biodistribution, macrophage recognition and cytotoxicity, and review current studies on MNP toxicity, caveats of nanotoxicity assessments and engineering strategies to optimize MNPs for biomedical use.
Analyst | 2014
Thomas R. Pisanic; Ye Zhang; Tza-Huei Wang
Quantum dots are semiconductor nanocrystals that exhibit exceptional optical and electrical behaviors not found in their bulk counterparts. Following seminal work in the development of water-soluble quantum dots in the late 1990s, researchers have sought to develop interesting and novel ways of exploiting the extraordinary properties of quantum dots for biomedical applications. Since that time, over 10,000 articles have been published related to the use of quantum dots in biomedicine, many of which regard their use in detection and diagnostic bioassays. This review presents a didactic overview of fundamental physical phenomena associated with quantum dots and paradigm examples of how these phenomena can and have been readily exploited for manifold uses in nanobiotechnology with a specific focus on their implementation in in vitro diagnostic assays and biodetection.
Nanomedicine: Nanotechnology, Biology and Medicine | 2013
Youngsoon Kim; Seong Deok Kong; Li-Han Chen; Thomas R. Pisanic; Sungho Jin; Veronica I. Shubayev
UNLABELLED Iron oxide nanoparticles (IONPs) are promising neuroimaging agents and molecular cargo across neurovascular barriers. Development of intrinsically safe IONP chemistries requires a robust in vivo nanoneurotoxicity screening model. Herein, we engineered four IONPs of different surface and core chemistries: DMSA-Fe2O3, DMSA-Fe3O4, PEG-Fe3O4 and PEG-Au-Fe3O4. Capitalizing on the ability of the peripheral nervous system to recruit potent immune cells from circulation, we characterized a spatiotemporally controlled platform for the study of in vivo nanobiointerfaces with hematogenous immune cells, neuroglial and neurovascular units after intraneural IONP delivery into rat sciatic nerve. SQUID magnetometry and histological iron stain were used for IONP tracking. Among the IONPs, DMSA-Fe2O3 NPs were potent pro-apoptotic agents in nerve, with differential ability to regulate oxidative stress, inflammation and apoptotic signaling in neuroglia, macrophages, lymphocytes and endothelial cells. This platform aims to facilitate the development of predictive paradigms of nanoneurotoxicity based on mechanistic investigation of relevant in vivo bio-nanointerfaces. FROM THE CLINICAL EDITOR This team of investigators report the development of a platform that enables screening of iron oxide nanoparticles from the standpoint of their potential neurotoxicity, utilizing rat sciatic nerves. Such screening tools are clearly needed with the potential advent of iron oxide nanoparticle-based diagnostic and therapeutic approaches.
Nucleic Acids Research | 2015
Thomas R. Pisanic; Pornpat Athamanolap; Weijie Poh; Chen Chen; Alicia Hulbert; Malcolm V. Brock; James G. Herman; Tza-Huei Wang
Many cancers comprise heterogeneous populations of cells at primary and metastatic sites throughout the body. The presence or emergence of distinct subclones with drug-resistant genetic and epigenetic phenotypes within these populations can greatly complicate therapeutic intervention. Liquid biopsies of peripheral blood from cancer patients have been suggested as an ideal means of sampling intratumor genetic and epigenetic heterogeneity for diagnostics, monitoring and therapeutic guidance. However, current molecular diagnostic and sequencing methods are not well suited to the routine assessment of epigenetic heterogeneity in difficult samples such as liquid biopsies that contain intrinsically low fractional concentrations of circulating tumor DNA (ctDNA) and rare epigenetic subclonal populations. Here we report an alternative approach, deemed DREAMing (Discrimination of Rare EpiAlleles by Melt), which uses semi-limiting dilution and precise melt curve analysis to distinguish and enumerate individual copies of epiallelic species at single-CpG-site resolution in fractions as low as 0.005%, providing facile and inexpensive ultrasensitive assessment of locus-specific epigenetic heterogeneity directly from liquid biopsies. The technique is demonstrated here for the evaluation of epigenetic heterogeneity at p14ARF and BRCA1 gene-promoter loci in liquid biopsies obtained from patients in association with non-small cell lung cancer (NSCLC) and myelodysplastic/myeloproliferative neoplasms (MDS/MPN), respectively.
Seminars in Cell & Developmental Biology | 2017
Thomas R. Pisanic; Pornpat Athamanolap; Tza-Huei Wang
DNA methylation is a fundamental means of epigenetic gene regulation that occurs in virtually all cell types. In many higher organisms, including humans, it plays vital roles in cell differentiation and homeostatic maintenance of cell phenotype. The control of DNA methylation has traditionally been attributed to a highly coordinated, linear process, whose dysregulation has been associated with numerous pathologies including cancer, where it occurs early in, and even prior to, the development of neoplastic tissues. Recent experimental evidence has demonstrated that, contrary to prevailing paradigms, methylation patterns are actually maintained through inexact, dynamic processes. These processes normally result in minor stochastic differences between cells that accumulate with age. However, various factors, including cancer itself, can lead to substantial differences in intercellular methylation patterns, viz. methylation heterogeneity. Advancements in molecular biology techniques are just now beginning to allow insight into how this heterogeneity contributes to clonal evolution and overall cancer heterogeneity. In the current review, we begin by presenting a didactic overview of how the basal bimodal methylome is established and maintained. We then provide a synopsis of some of the factors that lead to the accrual of heterogeneous methylation and how this heterogeneity may lead to gene silencing and impact the development of cancerous phenotypes. Lastly, we highlight currently available methylation assessment techniques and discuss their suitability to the study of heterogeneous methylation.
Expert Review of Molecular Diagnostics | 2014
Angela A. Guzzetta; Thomas R. Pisanic; Prateek Sharma; Joo Mi Yi; Alejandro Stark; Tza-Huei Wang; Nita Ahuja
Despite numerous technical hurdles, the realization of true personalized medicine is becoming a progressive reality for the future of patient care. With the development of new techniques and tools to measure the genetic signature of tumors, biomarkers are increasingly being used to detect occult tumors, determine the choice of treatment and predict outcomes. Methylation of CpG islands at the promoter region of genes is a particularly exciting biomarker as it is cancer-specific. Older methods to detect methylation were cumbersome, operator-dependent and required large amounts of DNA. However, a newer technique called methylation on beads has resulted in a more uniform, streamlined and efficient assay. Furthermore, methylation on beads permits the extraction and processing of miniscule amounts of methylated tumor DNA in the peripheral blood. Such a technique may aid in the clinical detection and treatment of cancers in the future.
Science Advances | 2018
Christine O’Keefe; Thomas R. Pisanic; Helena C. Zec; Michael J. Overman; James G. Herman; Tza-Huei Wang
Digital microfluidic technology enables profiling of genetic and epigenetic differences within tumors or cells. This work presents a digital microfluidic platform called HYPER-Melt (high-density profiling and enumeration by melt) for highly parallelized copy-by-copy DNA molecular profiling. HYPER-Melt provides a facile means of detecting and assessing sequence variations of thousands of individual DNA molecules through digitization in a nanowell microchip array, allowing amplification and interrogation of individual template molecules by detecting HRM fluorescence changes due to sequence-dependent denaturation. As a model application, HYPER-Melt is used here for the detection and assessment of intermolecular heterogeneity of DNA methylation within the promoters of classical tumor suppressor genes. The capabilities of this platform are validated through serial dilutions of mixed epialleles, with demonstrated detection limits as low as 1 methylated variant in 2 million unmethylated templates (0.00005%) of a classic tumor suppressor gene, CDKN2A (p14ARF). The clinical potential of the platform is demonstrated using a digital assay for NDRG4, a tumor suppressor gene that is commonly methylated in colorectal cancer, in liquid biopsies of healthy and colorectal cancer patients. Overall, the platform provides the depth of information, simplicity of use, and single-molecule sensitivity necessary for rapid assessment of intermolecular variation contributing to genetic and epigenetic heterogeneity for challenging applications in embryogenesis, carcinogenesis, and rare biomarker detection.
Cancer Research | 2017
Thomas R. Pisanic; Pornpat Athamanolap; Brendan Miller; Vincent S. Wu; Laura Elnitski; Tza-Huei Wang
Background: Current approaches for the assessment of methylation, such as methylation-specific PCR (MSP) and next-generation bisulfite sequencing (BS-Seq) are fundamentally limited in their ability to detect and assess heterogeneous methylation patterns (epialleles) in ultra-rare ( Methods: We expand upon the underlying theory of DREAMing and provide guidelines for the development of single-copy sensitive DREAMing assays. We further elucidate methods for tailoring DREAMing assays to samples of interest and compare the performance of these assays to commonly employed techniques including quantitative MSP (qMSP) and BS-Seq. Results: Development of single-copy sensitive DREAMing assays for a number of loci associated with classic tumor-specific methylation such as CHFR and RASSF1A as well as a candidate pan-cancer locus are reported. These assays are then used to analyze methylation in cfDNA derived from the plasma of cancer-positive and healthy patients. DREAM analysis reveals that DREAMing can readily detect over an order of magnitude more epialleles when directly compared to qMSP and BS-Seq assays of the same locus. Some of the challenges associated with distinguishing potential tumor-specific aberrant methylation from background methylation are then discussed and proposed solutions are demonstrated. Lastly, methods for optimizing DREAMing assays for specific sample types are discussed. Conclusions: DREAMing is a recently introduced method for the assessment of locus-specific methylation in samples containing ultra rare target DNA. Its low cost and simplicity coupled with the ability to provide enhanced, single-copy detection of heterogeneous methylation make DREAMing an attractive option over traditional techniques for demanding specimens such as cfDNA and rare cell populations. DREAMing has potential utility in the evaluation of DNA methylation dynamics in cell populations, prenatal testing, as well as clear use in early cancer diagnostic, companion diagnostic and predictive applications. Citation Format: Thomas R. Pisanic, Pornpat Athamanolap, Brendan F. Miller, Vincent Wu, Laura Elnitski, Tza-Huei Wang. DREAMing as a simple and low cost alternative for the assessment of methylation in ultra rare DNA [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2017; 2017 Apr 1-5; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2017;77(13 Suppl):Abstract nr 4666. doi:10.1158/1538-7445.AM2017-4666
Biomaterials | 2007
Thomas R. Pisanic; Jennifer D. Blackwell; Veronica I. Shubayev; Rita R. Fiñones; Sungho Jin
Journal of Biomedical Materials Research Part A | 2006
Seunghan Oh; Chiara Daraio; Li-Han Chen; Thomas R. Pisanic; Rita R. Fiñones; Sungho Jin