Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thomas Radimerski is active.

Publication


Featured researches published by Thomas Radimerski.


Cell | 2003

A Nutrient Sensor Mechanism Controls Drosophila Growth

Julien Colombani; Sophie Raisin; Sophie Pantalacci; Thomas Radimerski; Jacques Montagne; Pierre Léopold

Organisms modulate their growth according to nutrient availability. Although individual cells in a multicellular animal may respond directly to nutrient levels, growth of the entire organism needs to be coordinated. Here, we provide evidence that in Drosophila, coordination of organismal growth originates from the fat body, an insect organ that retains endocrine and storage functions of the vertebrate liver. In a genetic screen for growth modifiers, we identified slimfast, a gene that encodes an amino acid transporter. Remarkably, downregulation of slimfast specifically within the fat body causes a global growth defect similar to that seen in Drosophila raised under poor nutritional conditions. This involves TSC/TOR signaling in the fat body, and a remote inhibition of organismal growth via local repression of PI3-kinase signaling in peripheral tissues. Our results demonstrate that the fat body functions as a nutrient sensor that restricts global growth through a humoral mechanism.


Journal of Biology | 2003

The Drosophila Forkhead transcription factor FOXO mediates the reduction in cell number associated with reduced insulin signaling

Martin A. Jünger; Felix Rintelen; Hugo Stocker; Jonathan D. Wasserman; Mátyás Végh; Thomas Radimerski; Michael E. Greenberg; Ernst Hafen

Background Forkhead transcription factors belonging to the FOXO subfamily are negatively regulated by protein kinase B (PKB) in response to signaling by insulin and insulin-like growth factor in Caenorhabditis elegans and mammals. In Drosophila, the insulin-signaling pathway regulates the size of cells, organs, and the entire body in response to nutrient availability, by controlling both cell size and cell number. In this study, we present a genetic characterization of dFOXO, the only Drosophila FOXO ortholog. Results Ectopic expression of dFOXO and human FOXO3a induced organ-size reduction and cell death in a manner dependent on phosphoinositide (PI) 3-kinase and nutrient levels. Surprisingly, flies homozygous for dFOXO null alleles are viable and of normal size. They are, however, more sensitive to oxidative stress. Furthermore, dFOXO function is required for growth inhibition associated with reduced insulin signaling. Loss of dFOXO suppresses the reduction in cell number but not the cell-size reduction elicited by mutations in the insulin-signaling pathway. By microarray analysis and subsequent genetic validation, we have identified d4E-BP, which encodes a translation inhibitor, as a relevant dFOXO target gene. Conclusion Our results show that dFOXO is a crucial mediator of insulin signaling in Drosophila, mediating the reduction in cell number in insulin-signaling mutants. We propose that in response to cellular stresses, such as nutrient deprivation or increased levels of reactive oxygen species, dFOXO is activated and inhibits growth through the action of target genes such as d4E-BP.


Breast Cancer Research | 2008

NVP-AUY922: a small molecule HSP90 inhibitor with potent antitumor activity in preclinical breast cancer models

Michael Rugaard Jensen; Joseph Schoepfer; Thomas Radimerski; Andrew Massey; Chantale T. Guy; Josef Brueggen; Cornelia Quadt; Alan J. Buckler; Robert Cozens; Martin J. Drysdale; Carlos Garcia-Echeverria; Patrick Chène

IntroductionHeat shock protein 90 (HSP90) is a key component of a multichaperone complex involved in the post-translational folding of a large number of client proteins, many of which play essential roles in tumorigenesis. HSP90 has emerged in recent years as a promising new target for anticancer therapies.MethodsThe concentrations of the HSP90 inhibitor NVP-AUY922 required to reduce cell numbers by 50% (GI50 values) were established in a panel of breast cancer cell lines and patient-derived human breast tumors. To investigate the properties of the compound in vivo, the pharmacokinetic profile, antitumor effect, and dose regimen were established in a BT-474 breast cancer xenograft model. The effect on HSP90-p23 complexes, client protein degradation, and heat shock response was investigated in cell culture and breast cancer xenografts by immunohistochemistry, Western blot analysis, and immunoprecipitation.ResultsWe show that the novel small molecule HSP90 inhibitor NVP-AUY922 potently inhibits the proliferation of human breast cancer cell lines with GI50 values in the range of 3 to 126 nM. NVP-AUY922 induced proliferative inhibition concurrent with HSP70 upregulation and client protein depletion – hallmarks of HSP90 inhibition. Intravenous acute administration of NVP-AUY922 to athymic mice (30 mg/kg) bearing subcutaneous BT-474 breast tumors resulted in drug levels in excess of 1,000 times the cellular GI50 value for about 2 days. Significant growth inhibition and good tolerability were observed when the compound was administered once per week. Therapeutic effects were concordant with changes in pharmacodynamic markers, including HSP90-p23 dissociation, decreases in ERBB2 and P-AKT, and increased HSP70 protein levels.ConclusionNVP-AUY922 is a potent small molecule HSP90 inhibitor showing significant activity against breast cancer cells in cellular and in vivo settings. On the basis of its mechanism of action, preclinical activity profile, tolerability, and pharmaceutical properties, the compound recently has entered clinical phase I breast cancer trials.


Cancer Cell | 2012

JAK2/STAT5 Inhibition Circumvents Resistance to PI3K/mTOR Blockade: A Rationale for Cotargeting These Pathways in Metastatic Breast Cancer

Adrian Britschgi; Rita Andraos; Heike Brinkhaus; Ina Klebba; Vincent Romanet; Urs Müller; Masato Murakami; Thomas Radimerski; Mohamed Bentires-Alj

Hyperactive PI3K/mTOR signaling is prevalent in human malignancies and its inhibition has potent antitumor consequences. Unfortunately, single-agent targeted cancer therapy is usually short-lived. We have discovered a JAK2/STAT5-evoked positive feedback loop that dampens the efficacy of PI3K/mTOR inhibition. Mechanistically, PI3K/mTOR inhibition increased IRS1-dependent activation of JAK2/STAT5 and secretion of IL-8 in several cell lines and primary breast tumors. Genetic or pharmacological inhibition of JAK2 abrogated this feedback loop and combined PI3K/mTOR and JAK2 inhibition synergistically reduced cancer cell number and tumor growth, decreased tumor seeding and metastasis, and also increased overall survival of the animals. Our results provide a rationale for combined targeting of the PI3K/mTOR and JAK2/STAT5 pathways in triple-negative breast cancer, a particularly aggressive and currently incurable disease.


Journal of Medicinal Chemistry | 2009

Combining Hit Identification Strategies: Fragment- Based and in Silico Approaches to Orally Active 2-Aminothieno[2,3-D]Pyrimidine Inhibitors of the Hsp90 Molecular Chaperone.

Paul Brough; Xavier Barril; Jenifer Borgognoni; Patrick Chène; Nicholas Gareth Morse Davies; Ben Davis; Martin J. Drysdale; Brian W. Dymock; Suzanne A. Eccles; Carlos Garcia-Echeverria; Christophe Fromont; Angela Hayes; Roderick E. Hubbard; Allan M. Jordan; Michael Rugaard Jensen; Andrew Massey; Angela Merrett; Antony Padfield; Rachel Parsons; Thomas Radimerski; Florence I. Raynaud; Alan Robertson; Stephen D. Roughley; Joseph Schoepfer; Heather Simmonite; Swee Y. Sharp; Allan Surgenor; Melanie Valenti; Steven Walls; Paul Webb

Inhibitors of the Hsp90 molecular chaperone are showing considerable promise as potential molecular therapeutic agents for the treatment of cancer. Here we describe novel 2-aminothieno[2,3-d]pyrimidine ATP competitive Hsp90 inhibitors, which were designed by combining structural elements of distinct low affinity hits generated from fragment-based and in silico screening exercises in concert with structural information from X-ray protein crystallography. Examples from this series have high affinity (IC50 = 50-100 nM) for Hsp90 as measured in a fluorescence polarization (FP) competitive binding assay and are active in human cancer cell lines where they inhibit cell proliferation and exhibit a characteristic profile of depletion of oncogenic proteins and concomitant elevation of Hsp72. Several examples (34a, 34d and 34i) caused tumor growth regression at well tolerated doses when administered orally in a human BT474 human breast cancer xenograft model.


Journal of Experimental Medicine | 2012

Genetic resistance to JAK2 enzymatic inhibitors is overcome by HSP90 inhibition

Oliver Weigert; Andrew A. Lane; Liat Bird; Nadja Kopp; Bjoern Chapuy; Diederik van Bodegom; Angela V. Toms; Sachie Marubayashi; Amanda L. Christie; Michael R. McKeown; Ronald M. Paranal; James E. Bradner; Akinori Yoda; Christoph Gaul; Eric Vangrevelinghe; Vincent Romanet; Masato Murakami; Ralph Tiedt; Nicolas Ebel; Emeline Evrot; Alain De Pover; Catherine H. Regnier; Dirk Erdmann; Francesco Hofmann; Michael J. Eck; Stephen E. Sallan; Ross L. Levine; Andrew L. Kung; Fabienne Baffert; Thomas Radimerski

Hsp90 inhibition in B cell acute lymphoblastic leukemia overcomes resistance to JAK2 inhibitors.


Cancer Discovery | 2015

JAK–STAT Pathway Activation in Malignant and Nonmalignant Cells Contributes to MPN Pathogenesis and Therapeutic Response

Maria Kleppe; Minsuk Kwak; Priya Koppikar; Markus Riester; Matthew Keller; Lennart Bastian; Todd Hricik; Neha Bhagwat; Anna Sophia McKenney; Efthymia Papalexi; Omar Abdel-Wahab; Raajit Rampal; Sachie Marubayashi; Jonathan J. Chen; Vincent Romanet; Jordan S. Fridman; Jacqueline Bromberg; Julie Teruya-Feldstein; Masato Murakami; Thomas Radimerski; Franziska Michor; Rong Fan; Ross L. Levine

UNLABELLED The identification of JAK2/MPL mutations in patients with myeloproliferative neoplasms (MPN) has led to the clinical development of JAK kinase inhibitors, including ruxolitinib. Ruxolitinib reduces splenomegaly and systemic symptoms in myelofibrosis and improves overall survival; however, the mechanism by which JAK inhibitors achieve efficacy has not been delineated. Patients with MPN present with increased levels of circulating proinflammatory cytokines, which are mitigated by JAK inhibitor therapy. We sought to elucidate mechanisms by which JAK inhibitors attenuate cytokine-mediated pathophysiology. Single-cell profiling demonstrated that hematopoietic cells from myelofibrosis models and patient samples aberrantly secrete inflammatory cytokines. Pan-hematopoietic Stat3 deletion reduced disease severity and attenuated cytokine secretion, with similar efficacy as observed with ruxolitinib therapy. In contrast, Stat3 deletion restricted to MPN cells did not reduce disease severity or cytokine production. Consistent with these observations, we found that malignant and nonmalignant cells aberrantly secrete cytokines and JAK inhibition reduces cytokine production from both populations. SIGNIFICANCE Our results demonstrate that JAK-STAT3-mediated cytokine production from malignant and nonmalignant cells contributes to MPN pathogenesis and that JAK inhibition in both populations is required for therapeutic efficacy. These findings provide novel insight into the mechanisms by which JAK kinase inhibition achieves therapeutic efficacy in MPNs.


Molecular Cancer Therapeutics | 2010

Potent and Selective Inhibition of Polycythemia by the Quinoxaline JAK2 Inhibitor NVP-BSK805

Fabienne Baffert; Catherine H. Regnier; Alain De Pover; Carole Pissot-Soldermann; Gisele A. Tavares; Francesca Blasco; Josef Brueggen; Patrick Chène; Peter Drueckes; Dirk Erdmann; Pascal Furet; Marc Gerspacher; Marc Lang; David Ledieu; Lynda Nolan; Stephan Ruetz; Joerg Trappe; Eric Vangrevelinghe; Markus Wartmann; Lorenza Wyder; Francesco Hofmann; Thomas Radimerski

The recent discovery of an acquired activating point mutation in JAK2, substituting valine at amino acid position 617 for phenylalanine, has greatly improved our understanding of the molecular mechanism underlying chronic myeloproliferative neoplasms. Strikingly, the JAK2V617F mutation is found in nearly all patients suffering from polycythemia vera and in roughly every second patient suffering from essential thrombocythemia and primary myelofibrosis. Thus, JAK2 represents a promising target for the treatment of myeloproliferative neoplasms and considerable efforts are ongoing to discover and develop inhibitors of the kinase. Here, we report potent inhibition of JAK2V617F and JAK2 wild-type enzymes by a novel substituted quinoxaline, NVP-BSK805, which acts in an ATP-competitive manner. Within the JAK family, NVP-BSK805 displays more than 20-fold selectivity towards JAK2 in vitro, as well as excellent selectivity in broader kinase profiling. The compound blunts constitutive STAT5 phosphorylation in JAK2V617F-bearing cells, with concomitant suppression of cell proliferation and induction of apoptosis. In vivo, NVP-BSK805 exhibited good oral bioavailability and a long half-life. The inhibitor was efficacious in suppressing leukemic cell spreading and splenomegaly in a Ba/F3 JAK2V617F cell-driven mouse mechanistic model. Furthermore, NVP-BSK805 potently suppressed recombinant human erythropoietin-induced polycythemia and extramedullary erythropoiesis in mice and rats. Mol Cancer Ther; 9(7); 1945–55. ©2010 AACR.


Cancer Discovery | 2012

Modulation of Activation-Loop Phosphorylation by JAK Inhibitors Is Binding Mode Dependent

Rita Andraos; Zhiyan Qian; Débora Bonenfant; Joëlle Rubert; Eric Vangrevelinghe; Clemens Scheufler; Fanny Marque; Catherine H. Regnier; Alain De Pover; Hugues Ryckelynck; Neha Bhagwat; Priya Koppikar; Aviva Goel; Lorenza Wyder; Gisele Tavares; Fabienne Baffert; Carole Pissot-Soldermann; Paul W. Manley; Christoph Gaul; Hans Voshol; Ross L. Levine; William R. Sellers; Francesco Hofmann; Thomas Radimerski

Janus kinase (JAK) inhibitors are being developed for the treatment of rheumatoid arthritis, psoriasis, myeloproliferative neoplasms, and leukemias. Most of these drugs target the ATP-binding pocket and stabilize the active conformation of the JAK kinases. This type I binding mode can lead to an increase in JAK activation loop phosphorylation, despite blockade of kinase function. Here we report that stabilizing the inactive state via type II inhibition acts in the opposite manner, leading to a loss of activation loop phosphorylation. We used X-ray crystallography to corroborate the binding mode and report for the first time the crystal structure of the JAK2 kinase domain in an inactive conformation. Importantly, JAK inhibitor-induced activation loop phosphorylation requires receptor interaction, as well as intact kinase and pseudokinase domains. Hence, depending on the respective conformation stabilized by a JAK inhibitor, hyperphosphorylation of the activation loop may or may not be elicited.


BMC Chemical Biology | 2009

Catalytic inhibition of topoisomerase II by a novel rationally designed ATP-competitive purine analogue.

Patrick Chène; Joëlle Rudloff; Joseph Schoepfer; Pascal Furet; Peter Meier; Zhiyan Qian; Jean-Marc Schlaeppi; Rita Schmitz; Thomas Radimerski

Background Topoisomerase II poisons are in clinical use as anti-cancer therapy for decades and work by stabilizing the enzyme-induced DNA breaks. In contrast, catalytic inhibitors block the enzyme before DNA scission. Although several catalytic inhibitors of topoisomerase II have been described, preclinical concepts for exploiting their anti-proliferative activity based on molecular characteristics of the tumor cell have only recently started to emerge. Topoisomerase II is an ATPase and uses the energy derived from ATP hydrolysis to orchestrate the movement of the DNA double strands along the enzyme. Thus, interfering with ATPase function with low molecular weight inhibitors that target the nucleotide binding pocket should profoundly affect cells that are committed to undergo mitosis. Results Here we describe the discovery and characterization of a novel purine diamine analogue as a potent ATP-competitive catalytic inhibitor of topoisomerase II. Quinoline aminopurine compound 1 (QAP 1) inhibited topoisomerase II ATPase activity and decatenation reaction at sub-micromolar concentrations, targeted both topoisomerase II alpha and beta in cell free assays and, using a quantitative cell-based assay and a chromosome segregation assay, displayed catalytic enzyme inhibition in cells. In agreement with recent hypothesis, we show that BRCA1 mutant breast cancer cells have increased sensitivity to QAP 1. Conclusion The results obtained with QAP 1 demonstrate that potent and selective catalytic inhibition of human topoisomerase II function with an ATP-competitive inhibitor is feasible. Our data suggest that further drug discovery efforts on ATP-competitive catalytic inhibitors are warranted and that such drugs could potentially be developed as anti-cancer therapy for tumors that bear the appropriate combination of molecular alterations.

Collaboration


Dive into the Thomas Radimerski's collaboration.

Researchain Logo
Decentralizing Knowledge