Thomas Raschle
Harvard University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Thomas Raschle.
Journal of the American Chemical Society | 2013
Franz Hagn; Manuel Etzkorn; Thomas Raschle; Gerhard Wagner
Structural studies of membrane proteins are still hampered by difficulties of finding appropriate membrane-mimicking media that maintain protein structure and function. Phospholipid nanodiscs seem promising to overcome the intrinsic problems of detergent-containing environments. While nanodiscs can offer a near-native environment, the large particle size complicates their routine use in the structural analysis of membrane proteins by solution NMR. Here, we introduce nanodiscs assembled from shorter ApoA-I protein variants that are of markedly smaller diameter and show that the resulting discs provide critical improvements for the structure determination of membrane proteins by NMR. Using the bacterial outer-membrane protein OmpX as an example, we demonstrate that the combination of small nanodisc size, high deuteration levels of protein and lipids, and the use of advanced non-uniform NMR sampling methods enable the NMR resonance assignment as well as the high-resolution structure determination of polytopic membrane proteins in a detergent-free, near-native lipid bilayer setting. By applying this method to bacteriorhodopsin, we show that our smaller nanodiscs can also be beneficial for the structural characterization of the important class of seven-transmembrane helical proteins. Our set of engineered nanodiscs of subsequently smaller diameters can be used to screen for optimal NMR spectral quality for small to medium-sized membrane proteins while still providing a functional environment. In addition to their key improvements for de novo structure determination, due to their smaller size these nanodiscs enable the investigation of interactions between membrane proteins and their (soluble) partner proteins, unbiased by the presence of detergents that might disrupt biologically relevant interactions.
Journal of the American Chemical Society | 2009
Thomas Raschle; Sebastian Hiller; Tsyr-Yan Yu; Amanda J. Rice; Thomas Walz; Gerhard Wagner
Biophysical studies of membrane proteins are often impeded by the requirement for a membrane mimicking environment. Detergent micelles are the most common choice, but the denaturing properties make them unsatisfactory for studies of many membrane proteins and their interactions. In the present work, we explore phospholipid bilayer nanodiscs as membrane mimics and employ electron microscopy and solution NMR spectroscopy to characterize the structure and function of the human voltage dependent anion channel (VDAC-1) as an example of a polytopic integral membrane protein. Electron microscopy reveals the formation of VDAC-1 multimers, an observation that is consistent with results obtained in native mitochondrial outer membranes. High-resolution NMR spectroscopy demonstrates a well folded VDAC-1 protein and native NADH binding functionality. The observed chemical shift changes upon addition of the native ligand NADH to nanodisc-embedded VDAC-1 resemble those of micelle-embedded VDAC-1, indicating a similar structure and function in the two membrane-mimicking environments. Overall, the ability to study integral membrane proteins at atomic resolution with solution NMR in phospholipid bilayers, rather than in detergent micelles, offers exciting novel possibilities to approach the biophysical properties of membrane proteins under nondenaturing conditions, which makes this technology particular suitable for protein-protein interactions and other functional studies.
Proceedings of the National Academy of Sciences of the United States of America | 2006
Marco Strohmeier; Thomas Raschle; Jacek Mazurkiewicz; Karsten Rippe; Irmgard Sinning; Thérésa Bridget Fitzpatrick; Ivo Tews
Vitamin B6 is an essential metabolic cofactor that has more functions in humans than any other single nutrient. Its de novo biosynthesis occurs through two mutually exclusive pathways that are absent in animals. The predominant pathway found in most prokaryotes, fungi, and plants has only recently been discovered. It is distinguished by a glutamine amidotransferase, which is remarkable in that it alone can synthesize the cofactor form, pyridoxal 5′-phosphate (PLP), directly from a triose and a pentose saccharide and glutamine. Here we report the 3D structure of the PLP synthase complex with substrate glutamine bound as well as those of the individual synthase and glutaminase subunits Pdx1 and Pdx2, respectively. The complex is made up of 24 protein units assembled like a cogwheel, a dodecameric Pdx1 to which 12 Pdx2 subunits attach. In contrast to the architecture of previously determined glutamine amidotransferases, macromolecular assembly is directed by an N-terminal α-helix on the synthase. Interaction with the synthase subunit leads to glutaminase activation, resulting in formation of an oxyanion hole, a prerequisite for catalysis. Mutagenesis permitted identification of the remote glutaminase and synthase catalytic centers and led us to propose a mechanism whereby ammonia shuttles between these active sites through a methionine-rich hydrophobic tunnel.
Current Opinion in Structural Biology | 2010
Thomas Raschle; Sebastian Hiller; Manuel Etzkorn; Gerhard Wagner
Integral membrane proteins play essential roles in many biological processes, such as energy transduction, transport of molecules, and signaling. The correct function of membrane proteins is likely to depend strongly on the chemical and physical properties of the membrane. However, membrane proteins are not accessible to many biophysical methods in their native cellular membrane. A major limitation for their functional and structural characterization is thus the requirement for an artificial environment that mimics the native membrane to preserve the integrity and stability of the membrane protein. Most commonly employed are detergent micelles, which can however be detrimental to membrane protein activity and stability. Here, we review recent developments for alternative, nonmicellar solubilization techniques, with a particular focus on their application to solution NMR studies. We discuss the use of amphipols and lipid bilayer systems, such as bicelles and nanolipoprotein particles (NLPs). The latter show great promise for structural studies in near native membranes.
Structure | 2013
Manuel Etzkorn; Thomas Raschle; Franz Hagn; Vladimir Gelev; Amanda J. Rice; Thomas Walz; Gerhard Wagner
Selecting a suitable membrane-mimicking environment is of fundamental importance for the investigation of membrane proteins. Nonconventional surfactants, such as amphipathic polymers (amphipols) and lipid bilayer nanodiscs, have been introduced as promising environments that may overcome intrinsic disadvantages of detergent micelle systems. However, structural insights into the effects of different environments on the embedded protein are limited. Here, we present a comparative study of the heptahelical membrane protein bacteriorhodopsin in detergent micelles, amphipols, and nanodiscs. Our results confirm that nonconventional environments can increase stability of functional bacteriorhodopsin, and demonstrate that well-folded heptahelical membrane proteins are, in principle, accessible by solution-NMR methods in amphipols and phospholipid nanodiscs. Our data distinguish regions of bacteriorhodopsin that mediate membrane/solvent contacts in the tested environments, whereas the proteins functional inner core remains almost unperturbed. The presented data allow comparing the investigated membrane mimetics in terms of NMR spectral quality and thermal stability required for structural studies.
Journal of Biological Chemistry | 2006
Martin Gengenbacher; Thérésa Bridget Fitzpatrick; Thomas Raschle; Karlheinz Flicker; Irmgard Sinning; Sylke Müller; Peter Macheroux; Ivo Tews; Barbara Kappes
Vitamin B6 is one of natures most versatile cofactors. Most organisms synthesize vitamin B6 via a recently discovered pathway employing the proteins Pdx1 and Pdx2. Here we present an in-depth characterization of the respective orthologs from the malaria parasite, Plasmodium falciparum. Expression profiling of Pdx1 and -2 shows that blood-stage parasites indeed possess a functional vitamin B6 de novo biosynthesis. Recombinant Pdx1 and Pdx2 form a complex that functions as a glutamine amidotransferase with Pdx2 as the glutaminase and Pdx1 as pyridoxal-5 ′-phosphate synthase domain. Complex formation is required for catalytic activity of either domain. Pdx1 forms a chimeric bi-enzyme with the bacterial YaaE, a Pdx2 ortholog, both in vivo and in vitro, although this chimera does not attain full catalytic activity, emphasizing that species-specific structural features govern the interaction between the protein partners of the PLP synthase complexes in different organisms. To gain insight into the activation mechanism of the parasite bi-enzyme complex, the three-dimensional structure of Pdx2 was determined at 1.62 Å. The obstruction of the oxyanion hole indicates that Pdx2 is in a resting state and that activation occurs upon Pdx1-Pdx2 complex formation.
Proceedings of the National Academy of Sciences of the United States of America | 2014
Tingfang Yi; Bo Zhai; Yonghao Yu; Yoshikawa Kiyotsugu; Thomas Raschle; Manuel Etzkorn; Hee-Chan Seo; Michal J. Nagiec; Rafael E. Luna; Ellis L. Reinherz; John Blenis; Steven P. Gygi; Gerhard Wagner
Significance Tumor metastasis is the major cause of cancer lethality, whereas the underlying mechanisms are obscure. Breast cancer stem cells (CSCs) are essential for breast cancer relapse and metastasis and stromal cell-derived factor 1 (SDF-1)/chemokine (C-X-C motif) receptor 4 (CXCR4) is a key regulator of tumor dissemination. We report a large-scale quantification of SDF-1/CXCR4–induced phosphoproteome events and identify several previously unidentified phosphoproteins and signaling pathways in breast CSCs. This study provides insights into the understanding of the mechanisms of breast cancer metastasis. Breast cancer is the leading cause of cancer-related mortality in women worldwide, with an estimated 1.7 million new cases and 522,000 deaths around the world in 2012 alone. Cancer stem cells (CSCs) are essential for tumor reoccurrence and metastasis which is the major source of cancer lethality. G protein-coupled receptor chemokine (C-X-C motif) receptor 4 (CXCR4) is critical for tumor metastasis. However, stromal cell-derived factor 1 (SDF-1)/CXCR4–mediated signaling pathways in breast CSCs are largely unknown. Using isotope reductive dimethylation and large-scale MS-based quantitative phosphoproteome analysis, we examined protein phosphorylation induced by SDF-1/CXCR4 signaling in breast CSCs. We quantified more than 11,000 phosphorylation sites in 2,500 phosphoproteins. Of these phosphosites, 87% were statistically unchanged in abundance in response to SDF-1/CXCR4 stimulation. In contrast, 545 phosphosites in 266 phosphoproteins were significantly increased, whereas 113 phosphosites in 74 phosphoproteins were significantly decreased. SDF-1/CXCR4 increases phosphorylation in 60 cell migration- and invasion-related proteins, of them 43 (>70%) phosphoproteins are unrecognized. In addition, SDF-1/CXCR4 upregulates the phosphorylation of 44 previously uncharacterized kinases, 8 phosphatases, and 1 endogenous phosphatase inhibitor. Using computational approaches, we performed system-based analyses examining SDF-1/CXCR4–mediated phosphoproteome, including construction of kinase–substrate network and feedback regulation loops downstream of SDF-1/CXCR4 signaling in breast CSCs. We identified a previously unidentified SDF-1/CXCR4-PKA-MAP2K2-ERK signaling pathway and demonstrated the feedback regulation on MEK, ERK1/2, δ-catenin, and PPP1Cα in SDF-1/CXCR4 signaling in breast CSCs. This study gives a system-wide view of phosphorylation events downstream of SDF-1/CXCR4 signaling in breast CSCs, providing a resource for the study of CSC-targeted cancer therapy.
Journal of Biological Chemistry | 2007
Thomas Raschle; Duilio Arigoni; René Brunisholz; Helene Rechsteiner; Nikolaus Amrhein; Thérésa Bridget Fitzpatrick
Vitamin B6 is an essential metabolite in all organisms. De novo synthesis of the vitamin can occur through either of two mutually exclusive pathways referred to as deoxyxylulose 5-phosphate-dependent and deoxyxylulose 5-phosphate-independent. The latter pathway has only recently been discovered and is distinguished by the presence of two genes, Pdx1 and Pdx2, encoding the synthase and glutaminase subunit of PLP synthase, respectively. In the presence of ammonia, the synthase alone displays an exceptional polymorphic synthetic ability in carrying out a complex set of reactions, including pentose and triose isomerization, imine formation, ammonia addition, aldol-type condensation, cyclization, and aromatization, that convert C3 and C5 precursors into the cofactor B6 vitamer, pyridoxal 5′-phosphate. Here, employing the Bacillus subtilis proteins, we demonstrate key features along the catalytic path. We show that ribose 5-phosphate is the preferred C5 substrate and provide unequivocal evidence that the pent(ul)ose phosphate imine occurs at lysine 81 rather than lysine 149 as previously postulated. While this study was under review, corroborative crystallographic evidence has been provided for imine formation with the corresponding lysine group in the enzyme from Thermotoga maritima (Zein, F., Zhang, Y., Kang, Y.-N., Burns, K., Begley, T. P., and Ealick, S. E. (2006) Biochemistry 45, 14609–14620). We have detected an unanticipated covalent reaction intermediate that occurs subsequent to imine formation and is dependent on the presence of Pdx2 and glutamine. This step most likely primes the enzyme for acceptance of the triose sugar, ultimately leading to formation of the pyridine ring. Two alternative structures are proposed for the chromophoric intermediate, both of which require substantial modifications of the proposed mechanism.
Biochimica et Biophysica Acta | 2012
Tsyr-Yan Yu; Thomas Raschle; Sebastian Hiller; Gerhard Wagner
Three isoforms of the human voltage-dependent anion channel (VDAC), located in the outer mitochondrial membrane, are crucial regulators of mitochondrial function. Numerous studies have been carried out to elucidate biochemical properties, as well as the three-dimensional structure of VDAC-1. However, functional and structural studies of VDAC-2 and VDAC-3 at atomic resolution are still scarce. VDAC-2 is highly similar to VDAC-1 in amino acid sequence, but has substantially different biochemical functions and expression profiles. Here, we report the reconstitution of functional VDAC-2 in lauryldimethylamine-oxide (LDAO) detergent micelles and 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) lipid bilayer nanodiscs. We find that VDAC-2 is properly folded in both membrane-mimicking systems and that structural and functional characterization by solution NMR spectroscopy is feasible. This article is part of a Special Issue entitled: VDAC structure, function, and regulation of mitochondrial metabolism.
FEBS Journal | 2005
Thomas Meier; Jinshu Yu; Thomas Raschle; Fabienne Henzen; Peter Dimroth; Daniel J. Müller
The Na+‐dependent F‐ATP synthases of Ilyobacter tartaricus and Propionigenium modestum contain membrane‐embedded ring‐shaped c subunit assemblies with a stoichiometry of 11. Subunit c from either organism was overexpressed in Escherichia coli using a plasmid containing the corresponding gene, extracted from the membrane using detergent and then purified. Subsequent analyses by SDS/PAGE revealed that only a minor portion of the c subunits had assembled into stable rings, while the majority migrated as monomers. The population of rings consisted mainly of c11, but more slowly migrating assemblies were also found, which might reflect other c ring stoichiometries. We show that they consisted of higher aggregates of homogeneous c11 rings and/or assemblies of c11 rings and single c monomers. Atomic force microscopy topographs of c rings reconstituted into lipid bilayers showed that the c ring assemblies had identical diameters and that stoichiometries throughout all rings resolved at high resolution. This finding did not depend on whether the rings were assembled into crystalline or densely packed assemblies. Most of these rings represented completely assembled undecameric complexes. Occasionally, rings lacking a few subunits or hosting additional subunits in their cavity were observed. The latter rings may represent the aggregates between c11 and c1, as observed by SDS/PAGE. Our results are congruent with a stable c11 ring stoichiometry that seems to not be influenced by the expression level of subunit c in the bacteria.