Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thomas Redel is active.

Publication


Featured researches published by Thomas Redel.


Journal of Vascular and Interventional Radiology | 2006

Intravascular optical coherence tomography: comparison with histopathology in atherosclerotic peripheral artery specimens.

Oliver Meissner; Johannes Rieber; Gregor Babaryka; Melanie Oswald; Susanne Reim; Uwe Siebert; Thomas Redel; Maximilian F. Reiser; Ullrich G. Mueller-Lisse

PURPOSE Intravascular optical coherence tomography (OCT) is a new imaging modality that provides microstructural information on atherosclerotic plaques and has an axial resolution of 10-20 microm. OCT of coronary arteries characterizes different atherosclerotic plaque components by their distinctive signal patterns. Peripheral human arteries were examined ex vivo by means of OCT, and attempts to distinguish among fibrous, lipid-rich, and calcified atherosclerotic plaques were made based on imaging criteria previously established for coronary arteries. MATERIALS AND METHODS One hundred fifty-one atherosclerotic arterial segments were obtained from 15 below-knee amputations. OCT imaging criteria for different plaque types (fibrous, lipid-rich, calcified) were established in a subset of 30 arterial segments. The remaining 121 OCT images were analyzed by two independent readers. Each segment was divided into four quadrants. Agreement between histopathology and OCT was quantified by the kappa test of concordance, as were interobserver, intraobserver, and inter-method variability. RESULTS Four hundred sixty-nine of 484 quadrants (97%) were available for comparison. Sensitivity and specificity for OCT criteria (consensus readers 1 and 2) were 86% and 86% for fibrous plaques, 78% and 93% for lipid-rich plaques, and 84% and 95% for calcified plaques, respectively (overall agreement, 84%). The interobserver and intraobserver reliabilities of OCT assessment were high (kappa values of 0.84 and 0.87, respectively). The inter-method agreement was 0.74 for consensus OCT versus consensus histology. CONCLUSIONS OCT of peripheral human arteries ex vivo characterized different atherosclerotic plaque types with a high degree of agreement with histopathologic findings. Findings were comparable to those reported for coronary arteries. OCT promises to improve understanding of the progression or regression of peripheral atherosclerosis in vivo.


Computer Methods in Biomechanics and Biomedical Engineering | 2011

Tetrahedral vs. polyhedral mesh size evaluation on flow velocity and wall shear stress for cerebral hemodynamic simulation

Martin Spiegel; Thomas Redel; Y. Jonathan Zhang; Tobias Struffert; Joachim Hornegger; Robert G. Grossman; Arnd Doerfler; Christof Karmonik

Haemodynamic factors, in particular wall shear stresses (WSSs) may have significant impact on growth and rupture of cerebral aneurysms. Without a means to measure WSS reliably in vivo, computational fluid dynamic (CFD) simulations are frequently employed to visualise and quantify blood flow from patient-specific computational models. With increasing interest in integrating these CFD simulations into pretreatment planning, a better understanding of the validity of the calculations in respect to computation parameters such as volume element type, mesh size and mesh composition is needed. In this study, CFD results for the two most common aneurysm types (saccular and terminal) are compared for polyhedral- vs. tetrahedral-based meshes and discussed regarding future clinical applications. For this purpose, a set of models were constructed for each aneurysm with spatially varying surface and volume mesh configurations (mesh size range: 5119–258, 481 volume elements). WSS distribution on the model wall and point-based velocity measurements were compared for each configuration model. Our results indicate a benefit of polyhedral meshes in respect to convergence speed and more homogeneous WSS patterns. Computational variations of WSS values and blood velocities are between 0.84 and 6.3% from the most simple mesh (tetrahedral elements only) and the most advanced mesh design investigated (polyhedral mesh with boundary layer).


Proceedings of SPIE | 2009

Measurement of cerebral blood volume using angiographic C-arm systems

Michael Zellerhoff; Yu Deuerling-Zheng; Charles M. Strother; Azam Ahmed; Kari Pulfer; Thomas Redel; Kevin Royalty; Julie R. Grinde; Dan Consigny

While perfusion imaging is a well established diagnostic imaging technique, until now, it could not be performed using angiographic equipment. The ability to assess information about tissue perfusion in the angiographic suite should help to optimize management of patients with neurovascular diseases. We present a technique to measure cerebral blood volume (CBV) for the entire brain using an angiographic C-arm system. Combining a rotational acquisition protocol similar to that used for standard three-dimensional rotational angiography (3D DSA) in conjunction with a modified injection protocol providing a steady state of tissue contrast during the acquisition the data necessary to calculate CBV is acquired. The three-dimensional (3D) CBV maps are generated using a special reconstruction scheme which includes the automated detection of an arterial input function and several correction steps. For evaluation we compared this technique with standard perfusion CT (PCT) measurements in five healthy canines. Qualitative comparison of the CBV maps as well as quantitative comparison using 12 ROIs for each map showed a good correlation between the new technique and traditional PCT. In addition we evaluated the technique in a stroke model in canines. The presented technique provides the first step toward providing information about tissue perfusion available during the treatment of neurovascular diseases in the angiographic suite.


American Journal of Cardiology | 2016

Comparison of Fractional Flow Reserve Based on Computational Fluid Dynamics Modeling Using Coronary Angiographic Vessel Morphology Versus Invasively Measured Fractional Flow Reserve

Monique Tröbs; Stephan Achenbach; Jens Röther; Thomas Redel; Michael Scheuering; David Winneberger; Klaus Klingenbeck; Lucian Mihai Itu; Tiziano Passerini; Ali Kamen; Puneet Sharma; Dorin Comaniciu; Christian Schlundt

Invasive fractional flow reserve (FFRinvasive), although gold standard to identify hemodynamically relevant coronary stenoses, is time consuming and potentially associated with complications. We developed and evaluated a new approach to determine lesion-specific FFR on the basis of coronary anatomy as visualized by invasive coronary angiography (FFRangio): 100 coronary lesions (50% to 90% diameter stenosis) in 73 patients (48 men, 25 women; mean age 67 ± 9 years) were studied. On the basis of coronary angiograms acquired at rest from 2 views at angulations at least 30° apart, a PC-based computational fluid dynamics modeling software used personalized boundary conditions determined from 3-dimensional reconstructed angiography, heart rate, and blood pressure to derive FFRangio. The results were compared with FFRinvasive. Interobserver variability was determined in a subset of 25 narrowings. Twenty-nine of 100 coronary lesions were hemodynamically significant (FFRinvasive ≤ 0.80). FFRangio identified these with an accuracy of 90%, sensitivity of 79%, specificity of 94%, positive predictive value of 85%, and negative predictive value of 92%. The area under the receiver operating characteristic curve was 0.93. Correlation between FFRinvasive (mean: 0.84 ± 0.11) and FFRangio (mean: 0.85 ± 0.12) was r = 0.85. Interobserver variability of FFRangio was low, with a correlation of r = 0.88. In conclusion, estimation of coronary FFR with PC-based computational fluid dynamics modeling on the basis of lesion morphology as determined by invasive angiography is possible with high diagnostic accuracy compared to invasive measurements.


Computational and Mathematical Methods in Medicine | 2012

A Workflow for Patient-Individualized Virtual Angiogram Generation Based on CFD Simulation

Jürgen Endres; Markus Kowarschik; Thomas Redel; Puneet Sharma; Viorel Mihalef; Joachim Hornegger; Arnd Dörfler

Increasing interest is drawn on hemodynamic parameters for classifying the risk of rupture as well as treatment planning of cerebral aneurysms. A proposed method to obtain quantities such as wall shear stress, pressure, and blood flow velocity is to numerically simulate the blood flow using computational fluid dynamics (CFD) methods. For the validation of those calculated quantities, virtually generated angiograms, based on the CFD results, are increasingly used for a subsequent comparison with real, acquired angiograms. For the generation of virtual angiograms, several patient-specific parameters have to be incorporated to obtain virtual angiograms which match the acquired angiograms as best as possible. For this purpose, a workflow is presented and demonstrated involving multiple phantom and patient cases.


international conference of the ieee engineering in medicine and biology society | 2013

Hemodynamics at the ostium of cerebral aneurysms with relation to post-treatment changes by a virtual flow diverter: A computational fluid dynamics study

Christof Karmonik; Gouthami Chintalapani; Thomas Redel; Y. Jonathan Zhang; Orlando Diaz; Richard Klucznik; Robert G. Grossman

Computational fluid dynamics (CFD) techniques have been refined for modeling the hemodynamics in cerebral aneurysms. Recent interest has focused on understanding hemodynamic changes by treatment with a flow diverter (FD), i.e. a stent with a dense metal mesh which is placed across the ostium to divert the majority of flow away from the aneurysm. Potential complications include remnant inflow jets but, more seriously, aneurysm hemorrhage. For optimization of treatment outcome, a better understanding of the effects caused by the FD would be beneficial. In particular, pressure and velocity distributions at the aneurysm ostium are of interest, as they will be directly affected by the FD which in turn will influence post-treatment hemodynamics inside the aneurysm. Here, we report the results of a CFD study investigating the relationship between pre-treatment and post-treatment velocities, pressures and wall shear stresses (WSS) in the aneurysm with corresponding hemodynamic conditions at the aneurysm ostium prior to treatment. The study was carried out using a dedicated CFD prototype which allows modeling the effects of a virtual FD integrated into patient-specific geometries utilizing Darcys law. Velocities and WSS were reduced in all cases post FD treatment, pressure increased in one case. Heterogeneous distributions of the velocity magnitude were found at the ostium with focal maxima indicating potential risk zones for remnant inflow jets into the aneurysms. Pressures at the ostium correlated with pressure changes inside the aneurysm which could become a pre-treatment indicator for the evaluation of the suitability of a particular aneurysm for FD treatment.


international conference of the ieee engineering in medicine and biology society | 2010

Impact of tear location on hemodynamics in a type B aortic dissection investigated with computational fluid dynamics

Christof Karmonik; Jean Bismuth; Thomas Redel; Javier E. Anaya-Ayala; Mark G. Davies; Dipan J. Shah; Alan B. Lumsden

Stanford type B aortic dissections (TB-AD), which split the descending aorta in a true and false lumen, have better in-hospital survival than type A dissections affecting the ascending aorta. However, short-term and long-term prognosis for the individual patient remains challenging, with one in four patients not surviving after 3 years.


Physics in Medicine and Biology | 2011

Classification-based summation of cerebral digital subtraction angiography series for image post-processing algorithms

D Schuldhaus; M Spiegel; Thomas Redel; M Polyanskaya; Tobias Struffert; Joachim Hornegger; Arnd Doerfler

X-ray-based 2D digital subtraction angiography (DSA) plays a major role in the diagnosis, treatment planning and assessment of cerebrovascular disease, i.e. aneurysms, arteriovenous malformations and intracranial stenosis. DSA information is increasingly used for secondary image post-processing such as vessel segmentation, registration and comparison to hemodynamic calculation using computational fluid dynamics. Depending on the amount of injected contrast agent and the duration of injection, these DSA series may not exhibit one single DSA image showing the entire vessel tree. The interesting information for these algorithms, however, is usually depicted within a few images. If these images would be combined into one image the complexity of segmentation or registration methods using DSA series would drastically decrease. In this paper, we propose a novel method automatically splitting a DSA series into three parts, i.e. mask, arterial and parenchymal phase, to provide one final image showing all important vessels with less noise and moving artifacts. This final image covers all arterial phase images, either by image summation or by taking the minimum intensities. The phase classification is done by a two-step approach. The mask/arterial phase border is determined by a Perceptron-based method trained from a set of DSA series. The arterial/parenchymal phase border is specified by a threshold-based method. The evaluation of the proposed method is two-sided: (1) comparison between automatic and medical expert-based phase selection and (2) the quality of the final image is measured by gradient magnitudes inside the vessels and signal-to-noise (SNR) outside. Experimental results show a match between expert and automatic phase separation of 93%/50% and an average SNR increase of up to 182% compared to summing up the entire series.


Journal of NeuroInterventional Surgery | 2017

Does the DSA reconstruction kernel affect hemodynamic predictions in intracranial aneurysms? An analysis of geometry and blood flow variations

Philipp Berg; Sylvia Saalfeld; Samuel Voß; Thomas Redel; Bernhard Preim; Gábor Janiga; Oliver Beuing

Background Computational fluid dynamics (CFD) blood flow predictions in intracranial aneurysms promise great potential to reveal patient-specific flow structures. Since the workflow from image acquisition to the final result includes various processing steps, quantifications of the individual introduced potential error sources are required. Methods Three-dimensional (3D) reconstruction of the acquired imaging data as input to 3D model generation was evaluated. Six different reconstruction modes for 3D digital subtraction angiography (DSA) acquisitions were applied to eight patient-specific aneurysms. Segmentations were extracted to compare the 3D luminal surfaces. Time-dependent CFD simulations were carried out in all 48 configurations to assess the velocity and wall shear stress (WSS) variability due to the choice of reconstruction kernel. Results All kernels yielded good segmentation agreement in the parent artery; deviations of the luminal surface were present at the aneurysm neck (up to 34.18%) and in distal or perforating arteries. Observations included pseudostenoses as well as noisy surfaces, depending on the selected reconstruction kernel. Consequently, the hemodynamic predictions show a mean SD of 11.09% for the aneurysm neck inflow rate, 5.07% for the centerline-based velocity magnitude, and 17.83%/9.53% for the mean/max aneurysmal WSS, respectively. In particular, vessel sections distal to the aneurysms yielded stronger variations of the CFD values. Conclusions The choice of reconstruction kernel for DSA data influences the segmentation result, especially for small arteries. Therefore, if precise morphology measurements or blood flow descriptions are desired, a specific reconstruction setting is required. Furthermore, research groups should be encouraged to denominate the kernel types used in future hemodynamic studies.


international symposium on biomedical imaging | 2012

Virtual angiography using CFD simulations based on patient-specific parameter optimization

Juergen Endres; Thomas Redel; Markus Kowarschik; Jana Hutter; Joachim Hornegger; Arnd Doerfler

Computational fluid dynamics (CFD) simulations of blood flow within intracranial aneurysms may provide important hemodynamic information for treatment planning. However, reliable validation is required prior to applications in clinical environments. For that purpose, we introduce a workflow for generating virtual digital subtraction angiographies (DSA) based on CFD results and real patient-individual contrast injection protocols. This allows for comparing virtual and acquired DSA and thus drawing first conclusions about the reliability of the CFD simulation. Due to the possibility of simulating arbitrary x-ray system angulations, both mechanically impossible angulations as well as multiple projection views are representable using the proposed virtual DSA workflow.

Collaboration


Dive into the Thomas Redel's collaboration.

Researchain Logo
Decentralizing Knowledge