Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thomas Reinheckel is active.

Publication


Featured researches published by Thomas Reinheckel.


Nature Immunology | 2008

The NALP3 inflammasome is involved in the innate immune response to amyloid-beta

Annett Halle; Veit Hornung; Gabor C. Petzold; Cameron R. Stewart; Brian G. Monks; Thomas Reinheckel; Katherine A. Fitzgerald; Eicke Latz; Kathryn J. Moore; Douglas T. Golenbock

The fibrillar peptide amyloid-β (Aβ) has a chief function in the pathogenesis of Alzheimers disease. Interleukin 1β (IL-1β) is a key cytokine in the inflammatory response to Aβ. Insoluble materials such as crystals activate the inflammasome formed by the cytoplasmic receptor NALP3, which results in the release of IL-1β. Here we identify the NALP3 inflammasome as a sensor of Aβ in a process involving the phagocytosis of Aβ and subsequent lysosomal damage and release of cathepsin B. Furthermore, the IL-1β pathway was essential for the microglial synthesis of proinflammatory and neurotoxic factors, and the inflammasome, caspase-1 and IL-1β were critical for the recruitment of microglia to exogenous Aβ in the brain. Our findings suggest that activation of the NALP3 inflammasome is important for inflammation and tissue damage in Alzheimers disease.


The FASEB Journal | 1997

Degradation of oxidized proteins in mammalian cells.

Tilman Grune; Thomas Reinheckel; Kelvin J.A. Davies

Protein oxidation in vivo is a natural consequence of aerobic life. Oxygen radicals and other activated oxygen species generated as by‐products of cellular metabolism or from environmental sources cause modifications to the amino acids of proteins that generally result in loss of protein function/enzymatic activity. Oxidatively modified proteins can undergo direct chemical fragmentation or can form large aggregates due to covalent cross‐linking reactions and increased surface hydrophobicity. Mammalian cells exhibit only limited direct repair mechanisms and most oxidized proteins undergo selective proteolysis. The proteasome appears to be largely responsible for the degradation of soluble intracellular proteins. In most cells, oxidized proteins are cleaved in an ATP‐and ubiquitin‐independent pathway by the 20 S “core” proteasome. The proteasome complex recognizes hydrophobic amino acid residues, aromatic residues, and bulky aliphatic residues that are exposed during the oxidative rearrangement of secondary and tertiary protein structure: increased surface hydrophobicity is a feature common to all oxidized proteins so far tested. The recognition of such (normally shielded) hydrophobic residues is the suggested mechanism by which proteasome catalyzes the selective removal of oxidatively modified cell proteins. By minimizing protein aggregation and cross‐linking and by removing potentially toxic protein fragments, proteasome plays a key role in the overall antioxidant defenses that minimize the ravages of aging and disease.—Grune, T., Reinheckel, T., Davies, K. J. A. Degradation of oxidized proteins in mammalian cells. FASEB J. 11, 526–534 (1997)


Journal of Clinical Investigation | 2000

Role of cathepsin B in intracellular trypsinogen activation and the onset of acute pancreatitis

Walter Halangk; Markus M. Lerch; Barbara Brandt-Nedelev; Wera Roth; Thomas Reinheckel; Wolfram Domschke; H. Lippert; Christoph Peters; Jan M. Deussing

Autodigestion of the pancreas by its own prematurely activated digestive proteases is thought to be an important event in the onset of acute pancreatitis. The mechanism responsible for the intrapancreatic activation of digestive zymogens is unknown, but a recent hypothesis predicts that a redistribution of lysosomal cathepsin B (CTSB) into a zymogen-containing subcellular compartment triggers this event. To test this hypothesis, we used CTSB-deficient mice in which the ctsb gene had been deleted by targeted disruption. After induction of experimental secretagogue-induced pancreatitis, the trypsin activity in the pancreas of ctsb(-/-) animals was more than 80% lower than in ctsb(+/+) animals. Pancreatic damage as indicated by serum activities of amylase and lipase, or by the extent of acinar tissue necrosis, was 50% lower in ctsb(-/-) animals. These experiments provide the first conclusive evidence to our knowledge that cathepsin B plays a role in intrapancreatic trypsinogen activation and the onset of acute pancreatitis.


Current Pharmaceutical Design | 2007

Emerging roles of cysteine cathepsins in disease and their potential as drug targets.

Olga Vasiljeva; Thomas Reinheckel; Christoph Peters; Dušan Turk; Vito Turk; Boris Turk

The general view on cysteine cathepsins, which were long believed to be primarily involved in intracellular protein turnover, has dramatically changed in last 10 to 15 years. The discovery of new cathepsins, such as cathepsins K, V, X, F and O, and their tissue distribution suggested that at least some of them are involved in very specific cellular processes. Moreover, gene ablation experiments revealed that cathepsins play a vital role in numerous physiological processes, such as antigen processing and presentation, bone remodelling, prohormone processing and wound healing. Their involvement in several pathologies, including osteoporosis, rheumatoid arthritis, osteoarthritis, bronchial asthma and cancer have also been confirmed and today several of them have been validated as relevant targets for therapies. Compounds targeting cathepsins S and K are already in clinical evaluation, whereas others are in experimental phases. The cathepsin K inhibitor AAE-581 (balicatib) as the most advanced of them passed Phase II clinical trials in 2005. In this review, we discuss the current view on cathepsins as an emerging group of targets for several diseases and the development of cathepsin K and S inhibitors for treatment of osteoporosis and various immune disorders.


Journal of Clinical Investigation | 2010

Specialized roles for cysteine cathepsins in health and disease.

Jochen Reiser; Brian D. Adair; Thomas Reinheckel

Cathepsins were originally identified as proteases that act in the lysosome. Recent work has uncovered nontraditional roles for cathepsins in the extracellular space as well as in the cytosol and nucleus. There is strong evidence that subspecialized and compartmentalized cathepsins participate in many physiologic and pathophysiologic cellular processes, in which they can act as both digestive and regulatory proteases. In this review, we discuss the transcriptional and translational control of cathepsin expression, the regulation of intracellular sorting of cathepsins, and the structural basis of cathepsin activation and inhibition. In particular, we highlight the emerging roles of various cathepsin forms in disease, particularly those of the cardiac and renal systems.


Nature Medicine | 2005

Cathepsin L is required for endothelial progenitor cell-induced neovascularization

Carmen Urbich; Christopher Heeschen; Alexandra Aicher; Ken-ichiro Sasaki; Thomas Brühl; Mohammad Farhadi; Peter Vajkoczy; Wolf K. Hofmann; Christoph Peters; Len A. Pennacchio; Nasreddin Abolmaali; Emmanouil Chavakis; Thomas Reinheckel; Andreas M. Zeiher; Stefanie Dimmeler

Infusion of endothelial progenitor cells (EPC), but not of mature endothelial cells, promotes neovascularization after ischemia. We performed gene expression profiling of EPC and endothelial cells to identify genes that might be important for the neovascularization capacity of EPC. Notably, the protease cathepsin L (CathL) was highly expressed in EPC as opposed to endothelial cells and was essential for matrix degradation and invasion by EPC in vitro. CathL-deficient mice showed impaired functional recovery following hind limb ischemia, supporting the concept of a crucial role for CathL in postnatal neovascularization. Infused CathL-deficient progenitor cells neither homed to sites of ischemia nor augmented neovascularization. Forced expression of CathL in mature endothelial cells considerably enhanced their invasive activity and sufficed to confer their capacity for neovascularization in vivo. We concluded that CathL has a critical role in the integration of circulating EPC into ischemic tissue and is required for EPC-mediated neovascularization.


Cancer Research | 2006

Tumor Cell–Derived and Macrophage-Derived Cathepsin B Promotes Progression and Lung Metastasis of Mammary Cancer

Olga Vasiljeva; Anna Papazoglou; Achim Krüger; Harald Brodoefel; Matvey Korovin; Jan M. Deussing; Nicole H. Augustin; Boye Schnack Nielsen; Kasper Almholt; Matthew Bogyo; Christoph Peters; Thomas Reinheckel

Proteolysis in close vicinity of tumor cells is a hallmark of cancer invasion and metastasis. We show here that mouse mammary tumor virus-polyoma middle T antigen (PyMT) transgenic mice deficient for the cysteine protease cathepsin B (CTSB) exhibited a significantly delayed onset and reduced growth rate of mammary cancers compared with wild-type PyMT mice. Lung metastasis volumes were significantly reduced in PyMT;ctsb(+/-), an effect that was not further enhanced in PyMT;ctsb(-/-) mice. Furthermore, lung colonization studies of PyMT cells with different CTSB genotypes injected into congenic wild-type mice and in vitro Matrigel invasion assays confirmed a specific role for tumor-derived CTSB in invasion and metastasis. Interestingly, cell surface labeling of cysteine cathepsins by the active site probe DCG-04 detected up-regulation of cathepsin X on PyMT;ctsb(-/-) cells. Treatment of cells with a neutralizing anti-cathepsin X antibody significantly reduced Matrigel invasion of PyMT;ctsb(-/-) cells but did not affect invasion of PyMT;ctsb(+/+) or PyMT;ctsb(+/-) cells, indicating a compensatory function of cathepsin X in CTSB-deficient tumor cells. Finally, an adoptive transfer model, in which ctsb(+/+), ctsb(+/-), and ctsb(-/-) recipient mice were challenged with PyMT;ctsb(+/+) cells, was used to address the role of stroma-derived CTSB in lung metastasis formation. Notably, ctsb(-/-) mice showed reduced number and volume of lung colonies, and infiltrating macrophages showed a strongly up-regulated expression of CTSB within metastatic cell populations. These results indicate that both cancer cell-derived and stroma cell-derived (i.e., macrophages) CTSB plays an important role in tumor progression and metastasis.


Nature Nanotechnology | 2011

Ferri-liposomes as an MRI-visible drug-delivery system for targeting tumours and their microenvironment

Georgy Mikhaylov; Ursa Mikac; A. A. Magaeva; V. I. Itin; E. P. Naiden; Ivan Psakhye; Liane Babes; Thomas Reinheckel; Christoph Peters; Robert Zeiser; Matthew Bogyo; Vito Turk; Sergey G. Psakhye; Boris Turk; Olga Vasiljeva

The tumour microenvironment regulates tumour progression and the spread of cancer in the body. Targeting the stromal cells that surround cancer cells could, therefore, improve the effectiveness of existing cancer treatments. Here, we show that magnetic nanoparticle clusters encapsulated inside a liposome can, under the influence of an external magnet, target both the tumour and its microenvironment. We use the outstanding T2 contrast properties (r2=573-1,286 s(-1) mM(-1)) of these ferri-liposomes, which are ∼95 nm in diameter, to non-invasively monitor drug delivery in vivo. We also visualize the targeting of the tumour microenvironment by the drug-loaded ferri-liposomes and the uptake of a model probe by cells. Furthermore, we used the ferri-liposomes to deliver a cathepsin protease inhibitor to a mammary tumour and its microenvironment in a mouse, which substantially reduced the size of the tumour compared with systemic delivery of the same drug.


Journal of Experimental Medicine | 2008

Caspase-8 is activated by cathepsin D initiating neutrophil apoptosis during the resolution of inflammation

Sébastien Conus; Remo Perozzo; Thomas Reinheckel; Christoph Peters; Leonardo Scapozza; Shida Yousefi; Hans-Uwe Simon

In the resolution of inflammatory responses, neutrophils rapidly undergo apoptosis. We describe a new proapoptotic pathway in which cathepsin D directly activates caspase-8. Cathepsin D is released from azurophilic granules in neutrophils in a caspase-independent but reactive oxygen species–dependent manner. Under inflammatory conditions, the translocation of cathepsin D in the cytosol is blocked. Pharmacological or genetic inhibition of cathepsin D resulted in delayed caspase activation and reduced neutrophil apoptosis. Cathepsin D deficiency or lack of its translocation in the cytosol prolongs innate immune responses in experimental bacterial infection and in septic shock. Thus, we identified a new function of azurophilic granules that is in addition to their role in bacterial defense mechanisms: to regulate the life span of neutrophils and, therefore, the duration of innate immune responses through the release of cathepsin D.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Cathepsin L in secretory vesicles functions as a prohormone-processing enzyme for production of the enkephalin peptide neurotransmitter.

Sukkid Yasothornsrikul; Doron C. Greenbaum; Katalin F. Medzihradszky; Thomas Toneff; Richard A. Bundey; Ruthellen Miller; Birgit Schilling; Ivonne Petermann; Jessica Dehnert; Anna Logvinova; Paul Goldsmith; John M. Neveu; William S. Lane; Bradford W. Gibson; Thomas Reinheckel; Christoph Peters; Matthew Bogyo; Vivian Hook

Multistep proteolytic mechanisms are essential for converting proprotein precursors into active peptide neurotransmitters and hormones. Cysteine proteases have been implicated in the processing of proenkephalin and other neuropeptide precursors. Although the papain family of cysteine proteases has been considered the primary proteases of the lysosomal degradation pathway, more recent studies indicate that functions of these enzymes are linked to specific biological processes. However, few protein substrates have been described for members of this family. We show here that secretory vesicle cathepsin L is the responsible cysteine protease of chromaffin granules for converting proenkephalin to the active enkephalin peptide neurotransmitter. The cysteine protease activity was identified as cathepsin L by affinity labeling with an activity-based probe for cysteine proteases followed by mass spectrometry for peptide sequencing. Production of [Met]enkephalin by cathepsin L occurred by proteolytic processing at dibasic and monobasic prohormone-processing sites. Cellular studies showed the colocalization of cathepsin L with [Met]enkephalin in secretory vesicles of neuroendocrine chromaffin cells by immunofluorescent confocal and immunoelectron microscopy. Functional localization of cathepsin L to the regulated secretory pathway was demonstrated by its cosecretion with [Met]enkephalin. Finally, in cathepsin L gene knockout mice, [Met]enkephalin levels in brain were reduced significantly; this occurred with an increase in the relative amounts of enkephalin precursor. These findings indicate a previously uncharacterized biological role for secretory vesicle cathepsin L in the production of [Met]enkephalin, an endogenous peptide neurotransmitter.

Collaboration


Dive into the Thomas Reinheckel's collaboration.

Researchain Logo
Decentralizing Knowledge