Thomas Reinthaler
University of Vienna
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Thomas Reinthaler.
Applied and Environmental Microbiology | 2005
Gerhard J. Herndl; Thomas Reinthaler; Eva Teira; H.M. van Aken; C. Veth; Annelie Pernthaler; Jakob Pernthaler
ABSTRACT Fluorescence in situ hybridization (FISH) in combination with polynucleotide probes revealed that the two major groups of planktonic Archaea (Crenarchaeota and Euryarchaeota) exhibit a different distribution pattern in the water column of the Pacific subtropical gyre and in the Antarctic Circumpolar Current system. While Euryarchaeota were found to be more dominant in nearsurface waters, Crenarchaeota were relatively more abundant in the mesopelagic and bathypelagic waters. We determined the abundance of archaea in the mesopelagic and bathypelagic North Atlantic along a south-north transect of more than 4,000 km. Using an improved catalyzed reporter deposition-FISH (CARD-FISH) method and specific oligonucleotide probes, we found that archaea were consistently more abundant than bacteria below a 100-m depth. Combining microautoradiography with CARD-FISH revealed a high fraction of metabolically active cells in the deep ocean. Even at a 3,000-m depth, about 16% of the bacteria were taking up leucine. The percentage of Euryarchaeota and Crenarchaeaota taking up leucine did not follow a specific trend, with depths ranging from 6 to 35% and 3 to 18%, respectively. The fraction of Crenarchaeota taking up inorganic carbon increased with depth, while Euryarchaeota taking up inorganic carbon decreased from 200 m to 3,000 m in depth. The ability of archaea to take up inorganic carbon was used as a proxy to estimate archaeal cell production and to compare this archaeal production with total prokaryotic production measured via leucine incorporation. We estimate that archaeal production in the mesopelagic and bathypelagic North Atlantic contributes between 13 to 27% to the total prokaryotic production in the oxygen minimum layer and 41 to 84% in the Labrador Sea Water, declining to 10 to 20% in the North Atlantic Deep Water. Thus, planktonic archaea are actively growing in the dark ocean although at lower growth rates than bacteria and might play a significant role in the oceanic carbon cycle.
Science | 2011
Brandon K. Swan; Manuel Martínez-García; Christina M. Preston; Alexander Sczyrba; Tanja Woyke; Dominique Lamy; Thomas Reinthaler; Nicole J. Poulton; E. Dashiell P. Masland; Monica Lluesma Gomez; Michael E. Sieracki; Edward F. DeLong; Gerhard J. Herndl; Ramunas Stepanauskas
Bacteria isolated from a deep seawater mass seem to fix carbon using energy from the oxidation of inorganic sulfur. Recent studies suggest that unidentified prokaryotes fix inorganic carbon at globally significant rates in the immense dark ocean. Using single-cell sorting and whole-genome amplification of prokaryotes from two subtropical gyres, we obtained genomic DNA from 738 cells representing most cosmopolitan lineages. Multiple cells of Deltaproteobacteria cluster SAR324, Gammaproteobacteria clusters ARCTIC96BD-19 and Agg47, and some Oceanospirillales from the lower mesopelagic contained ribulose-1,5-bisphosphate carboxylase-oxygenase and sulfur oxidation genes. These results corroborated community DNA and RNA profiling from diverse geographic regions. The SAR324 genomes also suggested C1 metabolism and a particle-associated life-style. Microautoradiography and fluorescence in situ hybridization confirmed bicarbonate uptake and particle association of SAR324 cells. Our study suggests potential chemolithoautotrophy in several uncultured Proteobacteria lineages that are ubiquitous in the dark oxygenated ocean and provides new perspective on carbon cycling in the ocean’s largest habitat.
Applied and Environmental Microbiology | 2004
Eva Teira; Thomas Reinthaler; Annelie Pernthaler; Jakob Pernthaler; Gerhard J. Herndl
ABSTRACT The recently developed CARD-FISH protocol was refined for the detection of marine Archaea by replacing the lysozyme permeabilization treatment with proteinase K. This modification resulted in about twofold-higher detection rates for Archaea in deep waters. Using this method in combination with microautoradiography, we found that Archaea are more abundant than Bacteria (42% versus 32% of 4′,6′-diamidino-2-phenylindole counts) in the deep waters of the North Atlantic and that a larger fraction of Archaea than of Bacteria takes up l-aspartic acid (19% versus 10%).
Nature Geoscience | 2013
Gerhard J. Herndl; Thomas Reinthaler
A fraction of the carbon captured by phytoplankton in the sunlit surface ocean sinks to depth as dead organic matter and faecal material. The microbial breakdown of this material in the subsurface ocean generates carbon dioxide. Collectively, this microbially mediated flux of carbon from the atmosphere to the ocean interior is termed the biological pump. In recent decades it has become clear that the composition of the phytoplankton community in the surface ocean largely determines the quantity and quality of organic matter that sinks to depth. This settling organic matter, however, is not sufficient to meet the energy demands of microbes in the dark ocean. Two additional sources of organic matter have been identified: non-sinking organic particles of debated origin that escape capture by sediment traps and exhibit stable concentrations throughout the dark ocean, and microbes that convert inorganic carbon into organic matter. Whether these two sources can together account for the significant mismatch between organic matter consumption and supply in the dark ocean remains to be seen. It is clear, however, that the microbial community of the deep ocean works in a fundamentally different way from surface water communities.
Applied and Environmental Microbiology | 2005
Thomas Reinthaler; Christian Winter; Gerhard J. Herndl
ABSTRACT We investigated the relationship between bacterioplankton production (BP), respiration (BR), and community composition measured by terminal restriction fragment length polymorphism in the southern North Sea over a seasonal cycle. Major changes in bacterioplankton richness were apparent from April to December. While cell-specific BP decreased highly significantly with increasing bacterioplankton richness, cell-specific BR was found to be variable along the richness gradient, suggesting that bacterioplankton respiration is rather independent from shifts in the bacterial community composition. As a consequence, the bacterial growth efficiency [BGE = BP/(BP + BR)] was negatively related to bacterioplankton richness, explaining ∼43% of the variation in BGE. Our results indicate that despite the observed shifts in the community composition, the main function of the bacterioplankton, the remineralization of dissolved organic carbon to CO2, is rather stable.
The ISME Journal | 2012
Daniele De Corte; Eva Sintes; Taichi Yokokawa; Thomas Reinthaler; Gerhard J. Herndl
Viruses are an abundant, diverse and dynamic component of marine ecosystems and have a key role in the biogeochemical processes of the ocean by controlling prokaryotic and phytoplankton abundance and diversity. However, most of the studies on virus–prokaryote interactions in marine environments have been performed in nearshore waters. To assess potential variations in the relation between viruses and prokaryotes in different oceanographic provinces, we determined viral and prokaryotic abundance and production throughout the water column along a latitudinal transect in the North Atlantic. Depth-related trends in prokaryotic and viral abundance (both decreasing by one order of magnitude from epi- to abyssopelagic waters), and prokaryotic production (decreasing by three orders of magnitude) were observed along the latitudinal transect. The virus-to-prokaryote ratio (VPR) increased from ∼19 in epipelagic to ∼53 in the bathy- and abyssopelagic waters. Although the lytic viral production decreased significantly with depth, the lysogenic viral production did not vary with depth. In bathypelagic waters, pronounced differences in prokaryotic and viral abundance were found among different oceanic provinces with lower leucine incorporation rates and higher VPRs in the North Atlantic Gyre province than in the provinces further north and south. The percentage of lysogeny increased from subpolar regions toward the more oligotrophic lower latitudes. Based on the observed trends over this latitudinal transect, we conclude that the viral–host interactions significantly change among different oceanic provinces in response to changes in the biotic and abiotic variables.
Environmental Microbiology | 2011
Marta M. Varela; Hendrik M. van Aken; Eva Sintes; Thomas Reinthaler; Gerhard J. Herndl
Marine Crenarchaeota are among the most abundant groups of prokaryotes in the ocean and recent reports suggest that they oxidize ammonia as an energy source and inorganic carbon as carbon source, while other studies indicate that Crenarchaeota use organic carbon and hence, live heterotrophically. We used catalysed reporter deposition fluorescence in situ hybridization (CARD-FISH) to determine the crenarchaeal and bacterial contribution to total prokaryotic abundance in the (sub)tropical Atlantic. Bacteria contributed ~ 50% to total prokaryotes throughout the water column. Marine Crenarchaeota Group I (MCGI) accounted for ~ 5% of the prokaryotes in subsurface waters (100 m depth) and between 10 and 20% in the oxygen minimum layer (250-500 m depth) and deep waters (North East Atlantic Deep Water). The fraction of both MCGI and Bacteria fixing inorganic carbon, determined by combining microautoradiography with CARD-FISH (MICRO-CARD-FISH), decreased with depth, ranging from ~ 30% in the oxygen minimum zone to < 10% in the intermediate waters (Mediterranean Sea Outflow Water, Antarctic Intermediate Water). In the deeper water masses, however, MCGI were not taking up inorganic carbon. Using quantitative MICRO-CARD-FISH to determine autotrophy activity on a single cell level revealed that MCGI are incorporating inorganic carbon (0.002-0.1 fmol C cell⁻¹ day⁻¹) at a significantly lower rate than Bacteria (0.01-0.6 fmol C cell⁻¹ day⁻¹). Hence, it appears that MCGI contribute substantially less to autotrophy than Bacteria. Taking the stoichiometry of nitrification together with our findings suggests that MCGI might not dominate the ammonia oxidation step in the mesopelagic waters of the ocean to that extent as the reported dominance of archaeal over bacterial amoA would suggest.
Journal of Applied Microbiology | 2007
Inés C. Wilhartitz; Robert L. Mach; Eva Teira; Thomas Reinthaler; Gerhard J. Herndl; Andreas H. Farnleitner
Aims: We compared the applicability of catalysed reporter deposition fluorescence in situ hybridization (CARD‐FISH) and FISH to enumerate prokaryotic populations in ultra‐oligotrophic alpine groundwaters and bottled mineral water
Geophysical Research Letters | 2010
Federico Baltar; Javier Arístegui; Eva Sintes; Josep M. Gasol; Thomas Reinthaler; Gerhard J. Herndl
It is generally assumed that sinking particulate organic carbon (POC) constitutes the main source of organic carbon supply to the deep oceans food webs. However, a major discrepancy between the ra ...
PLOS ONE | 2013
Federico Baltar; Thomas Reinthaler; Gerhard J. Herndl; Jarone Pinhassi
Reactive oxygen species such as hydrogen peroxide have the potential to alter metabolic rates of marine prokaryotes, ultimately impacting the cycling and bioavailability of nutrients and carbon. We studied the influence of H2O2 on prokaryotic heterotrophic production (PHP) and extracellular enzymatic activities (i.e., β-glucosidase [BGase], leucine aminopeptidase [LAPase] and alkaline phosphatase [APase]) in the subtropical Atlantic. With increasing concentrations of H2O2 in the range of 100–1000 nM, LAPase, APase and BGase were reduced by up to 11, 23 and 62%, respectively, in the different water layers. Incubation experiments with subsurface waters revealed a strong inhibition of all measured enzymatic activities upon H2O2 amendments in the range of 10–500 nM after 24 h. H2O2 additions also reduced prokaryotic heterotrophic production by 36–100% compared to the rapid increases in production rates occurring in the unamended controls. Our results indicate that oxidative stress caused by H2O2 affects prokaryotic growth and hydrolysis of specific components of the organic matter pool. Thus, we suggest that oxidative stress may have important consequences on marine carbon and energy fluxes.