Thomas Reitz
Helmholtz Centre for Environmental Research - UFZ
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Thomas Reitz.
Journal of Hazardous Materials | 2011
Mohamed L. Merroun; Marta Nedelkova; Jesus J. Ojeda; Thomas Reitz; Margarita López Fernández; José M. Arias; Maria E. Romero-Gonzalez; S. Selenska-Pobell
This work describes the mechanisms of uranium biomineralization at acidic conditions by Bacillus sphaericus JG-7B and Sphingomonas sp. S15-S1 both recovered from extreme environments. The U-bacterial interaction experiments were performed at low pH values (2.0-4.5) where the uranium aqueous speciation is dominated by highly mobile uranyl ions. X-ray absorption spectroscopy (XAS) showed that the cells of the studied strains precipitated uranium at pH 3.0 and 4.5 as a uranium phosphate mineral phase belonging to the meta-autunite group. Transmission electron microscopic (TEM) analyses showed strain-specific localization of the uranium precipitates. In the case of B. sphaericus JG-7B, the U(VI) precipitate was bound to the cell wall. Whereas for Sphingomonas sp. S15-S1, the U(VI) precipitates were observed both on the cell surface and intracellularly. The observed U(VI) biomineralization was associated with the activity of indigenous acid phosphatase detected at these pH values in the absence of an organic phosphate substrate. The biomineralization of uranium was not observed at pH 2.0, and U(VI) formed complexes with organophosphate ligands from the cells. This study increases the number of bacterial strains that have been demonstrated to precipitate uranium phosphates at acidic conditions via the activity of acid phosphatase.
Frontiers in Microbiology | 2016
Davide Francioli; Elke Schulz; Guillaume Lentendu; Tesfaye Wubet; François Buscot; Thomas Reitz
Soil management is fundamental to all agricultural systems and fertilization practices have contributed substantially to the impressive increases in food production. Despite the pivotal role of soil microorganisms in agro-ecosystems, we still have a limited understanding of the complex response of the soil microbiota to organic and mineral fertilization in the very long-term. Here, we report the effects of different fertilization regimes (mineral, organic and combined mineral and organic fertilization), carried out for more than a century, on the structure and activity of the soil microbiome. Organic matter content, nutrient concentrations, and microbial biomass carbon were significantly increased by mineral, and even more strongly by organic fertilization. Pyrosequencing revealed significant differences between the structures of bacterial and fungal soil communities associated to each fertilization regime. Organic fertilization increased bacterial diversity, and stimulated microbial groups (Firmicutes, Proteobacteria, and Zygomycota) that are known to prefer nutrient-rich environments, and that are involved in the degradation of complex organic compounds. In contrast, soils not receiving manure harbored distinct microbial communities enriched in oligotrophic organisms adapted to nutrient-limited environments, as Acidobacteria. The fertilization regime also affected the relative abundances of plant beneficial and detrimental microbial taxa, which may influence productivity and stability of the agroecosystem. As expected, the activity of microbial exoenzymes involved in carbon, nitrogen, and phosphorous mineralization were enhanced by both types of fertilization. However, in contrast to comparable studies, the highest chitinase and phosphatase activities were observed in the solely mineral fertilized soil. Interestingly, these two enzymes showed also a particular high biomass-specific activities and a strong negative relation with soil pH. As many soil parameters are known to change slowly, the particularity of unchanged fertilization treatments since 1902 allows a profound assessment of linkages between management and abiotic as well as biotic soil parameters. Our study revealed that pH and TOC were the majors, while nitrogen and phosphorous pools were minors, drivers for structure and activity of the soil microbial community. Due to the long-term treatments studied, our findings likely represent permanent and stable, rather than transient, responses of soil microbial communities to fertilization.
Radiochimica Acta | 2011
Thomas Reitz; Mohamed L. Merroun; André Rossberg; Robin Steudtner; Sonja Selenska-Pobell
Abstract U(VI) accumulation by the acidothermophilic archaeon Sulfolobus acidocaldarius at a moderate acidic pH of 4.5 was investigated. This pH value is relevant for some heavy metal and uranium polluted environments where populations of S. acidocaldarius were found to persist. We demonstrate that U(VI) is rapidly complexed by the archaeal cells. A combination of X-ray absorption spectroscopy and time-resolved laser-induced fluorescence spectroscopy revealed that at pH 4.5 organic phosphate and carboxylic groups are involved in the U(VI) complexation. These results are in contrast to those published for most bacteria which at this pH precipitate U(VI) mainly in inorganic uranyl phosphate phases. As demonstrated by TEM only a limited part of the added U(VI) was biomineralized extracellularly in the case of the studied archaeon. Most of the U(VI) accumulates were localized in a form of intracellular deposits which were associated with the inner side of the cytoplasma membrane. Observed differences in U(VI) bioaccumulation between the studied archaeon and bacteria can be explained by the significant differences in their cell wall structures as well as by their different physiological characteristics.
Radiochimica Acta | 2010
Thomas Reitz; Mohamed L. Merroun; André Rossberg; Sonja Selenska-Pobell
Abstract Interactions of the acidothermophilic archaeon Sulfolobus acidocaldarius DSM 639 with U(VI) were studied by using a combination of batch experiments, X-ray absorption spectroscopy (XAS), and time-resolved laser-induced fluorescence spectroscopy (TRLFS). We demonstrated that at pH 2 this archaeal strain possesses a low tolerance to U(VI) and that its growth is limited to a uranium concentration below 1.1 mM. At similarly high acidic conditions (pH 1.5 and 3.0), covering the physiological pH growth optimum of S. acidocaldarius, at which U(VI) is soluble and highly toxic, rapid accumulation of the radionuclide by the cells of the strain occurred. About half of the uranium binding capacity was reached by the strain after an incubation of five minutes and nearly total saturation of the binding sites was achieved after 30 min. Both, EXAFS- and TRLF-spectroscopic analyses showed that the accumulated U(VI) was complexed mainly through organic phosphate groups. The EXAFS measurements revealed that U(VI) is coordinated to the organic phosphate ligands of the archaeal cells in a monodentate binding mode with an average U–P bond distance of 3.60±0.02 Å.
PLOS ONE | 2014
Thomas Reitz; André Rossberg; Astrid Barkleit; Sonja Selenska-Pobell; Mohamed L. Merroun
Interactions of a facultative anaerobic bacterial isolate named Paenibacillus sp. JG-TB8 with U(VI) were studied under oxic and anoxic conditions in order to assess the influence of the oxygen-dependent cell metabolism on microbial uranium mobilization and immobilization. We demonstrated that aerobically and anaerobically grown cells of Paenibacillus sp. JG-TB8 accumulate uranium from aqueous solutions under acidic conditions (pH 2 to 6), under oxic and anoxic conditions. A combination of spectroscopic and microscopic methods revealed that the speciation of U(VI) associated with the cells of the strain depend on the pH as well as on the aeration conditions. At pH 2 and pH 3, uranium was exclusively bound by organic phosphate groups provided by cellular components, independently on the aeration conditions. At higher pH values, a part (pH 4.5) or the total amount (pH 6) of the dissolved uranium was precipitated under oxic conditions in a meta-autunite-like uranyl phosphate mineral phase without supplying an additional organic phosphate substrate. In contrast to that, under anoxic conditions no mineral formation was observed at pH 4.5 and pH 6, which was clearly assigned to decreased orthophosphate release by the cells. This in turn was caused by a suppression of the indigenous phosphatase activity of the strain. The results demonstrate that changes in the metabolism of facultative anaerobic microorganisms caused by the presence or absence of oxygen can decisively influence U(VI) biomineralization.
Nanomaterials and Nanotechnology | 2011
S. Selenska-Pobell; Thomas Reitz; Rico Schönemann; Thomas Herrmansdörfer; Mohamed L. Merroun; Andrea Geißler; J. Bartolomé; F. Bartolomé; L. M. García; F. Wilhelm; A. Rogalev
Cell-ghosts representing empty cells of the archaeon Sulfolobus acidocaldarius, consisting only of their highly ordered and unusually stable outermost proteinaceous surface layer (S-layer), were used as templates for Au nanoparticles fabrication. The properties of these archaeal Au nanoparticles differ significantly from those produced earlier by us onto bacterial S-layer sheets. The archaeal Au nanoparticles, with a size of about 2.5 nm, consist exclusively of metallic Au(0), while those produced on the bacterial S-layer had a size of about 4 nm and represented a mixture of Au(0) and Au(III) in the ratio of 40 to 60 %.
PLOS ONE | 2015
Witoon Purahong; Barbara Stempfhuber; Guillaume Lentendu; Davide Francioli; Thomas Reitz; François Buscot; Michael Schloter; Dirk Krüger
Due to the high diversity of bacteria in many ecosystems, their slow generation times, specific but mostly unknown nutrient requirements and syntrophic interactions, isolation based approaches in microbial ecology mostly fail to describe microbial community structure. Thus, cultivation independent techniques, which rely on directly extracted nucleic acids from the environment, are a well-used alternative. For example, bacterial automated ribosomal intergenic spacer analysis (B-ARISA) is one of the widely used methods for fingerprinting bacterial communities after PCR-based amplification of selected regions of the operon coding for rRNA genes using community DNA. However, B-ARISA alone does not provide any taxonomic information and the results may be severely biased in relation to the primer set selection. Furthermore, amplified DNA stemming from mitochondrial or chloroplast templates might strongly bias the obtained fingerprints. In this study, we determined the applicability of three different B-ARISA primer sets to the study of bacterial communities. The results from in silico analysis harnessing publicly available sequence databases showed that all three primer sets tested are specific to bacteria but only two primers sets assure high bacterial taxa coverage (1406f/23Sr and ITSF/ITSReub). Considering the study of bacteria in a plant interface, the primer set ITSF/ITSReub was found to amplify (in silico) sequences of some important crop species such as Sorghum bicolor and Zea mays. Bacterial genera and plant species potentially amplified by different primer sets are given. These data were confirmed when DNA extracted from soil and plant samples were analyzed. The presented information could be useful when interpreting existing B-ARISA results and planning B-ARISA experiments, especially when plant DNA can be expected.
AMBIO: A Journal of the Human Environment | 2018
Uwe Buczko; Michael van Laak; Bettina Eichler-Löbermann; Wolfgang Gans; Ines Merbach; Kerstin Panten; Edgar Peiter; Thomas Reitz; Heide Spiegel; Sabine von Tucher
Phosphorus (P) fertilizer recommendations in most European countries are based on plant-available soil P contents and long-term field experiments. Site-specific conditions are often neglected, resulting in excessive P fertilizer applications. P fertilization experiments including relevant site and soil parameters were evaluated in order to analyze the yield response. The database comprises about 2000 datasets from 30 field experiments from Germany and Austria. Statistical evaluations using a classification and regression tree approach, and multiple linear regression analysis indicate that besides plant-available soil P content, soil texture and soil organic matter content have a large influence on the effectiveness of P fertilization. This study methodology can be a basis for modification and specification of existing P fertilization recommendations and thus contribute to mitigate environmental impacts of P fertilization.
Canadian Journal of Soil Science | 2018
Tetiana Medinski; Dirk Freese; Thomas Reitz
Abstract: This study investigates changes in soil phosphorus (P) in different fertilization treatments applied since 1902 on Chernozem soil at a “Static Fertilization Experiment” in Germany. Total and plant-available soil P, and soil P balances were assessed at 0–30, 30–60, and 60–90 cm depth layers in unfertilized “Zero”, mineral “NK” and “NPK”, and combined mineral and organic “FYM + NK” (farmyard manure + NK) and “FYM + NPK” fertilization treatments. P-use efficiencies were determined for each crop in rotation (sugar beet, spring barley, potato, and winter wheat). The 110 yr of P fertilization at rates between 22 and 55 t ha-1 yr-1 resulted in a significant increase of available P contents. P stocks increased up to 60 cm depth. Total P accumulation comprised 1.4 t ha-1 for NPK, 1.3 t ha-1 for FYM + NK, and 3.1 t ha-1 for FYM + NPK. Crops cultivation without P fertilization in Zero and NK treatments resulted in negative P balances and reduction of available P below recommended levels. Reduction of mineral P application rates after 1981, along with crop variety-dependent yield increases, resulted in an improved P-use efficiency. An organic fertilization combined with mineral N and K fertilizers (FYM + NK) was found to be the most P-efficient treatment for Chernozem soils.
Dalton Transactions | 2015
Thomas Reitz; André Rossberg; Astrid Barkleit; Robin Steudtner; Sonja Selenska-Pobell; Mohamed L. Merroun