Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thomas Riemensperger is active.

Publication


Featured researches published by Thomas Riemensperger.


Current Biology | 2006

Light-induced activation of distinct modulatory neurons triggers appetitive or aversive learning in Drosophila larvae

Christian Schroll; Thomas Riemensperger; Daniel Bucher; Julia Ehmer; Thomas Völler; Karen Erbguth; Bertram Gerber; Thomas Hendel; Georg Nagel; Erich Buchner; André Fiala

During classical conditioning, a positive or negative value is assigned to a previously neutral stimulus, thereby changing its significance for behavior. If an odor is associated with a negative stimulus, it can become repulsive. Conversely, an odor associated with a reward can become attractive. By using Drosophila larvae as a model system with minimal brain complexity, we address the question of which neurons attribute these values to odor stimuli. In insects, dopaminergic neurons are required for aversive learning, whereas octopaminergic neurons are necessary and sufficient for appetitive learning. However, it remains unclear whether two independent neuronal populations are sufficient to mediate such antagonistic values. We report the use of transgenically expressed channelrhodopsin-2, a light-activated cation channel, as a tool for optophysiological stimulation of genetically defined neuronal populations in Drosophila larvae. We demonstrate that distinct neuronal populations can be activated simply by illuminating the animals with blue light. Light-induced activation of dopaminergic neurons paired with an odor stimulus induces aversive memory formation, whereas activation of octopaminergic/tyraminergic neurons induces appetitive memory formation. These findings demonstrate that antagonistic modulatory subsystems are sufficient to substitute for aversive and appetitive reinforcement during classical conditioning.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Behavioral consequences of dopamine deficiency in the Drosophila central nervous system

Thomas Riemensperger; Guillaume Isabel; Hélène Coulom; Kirsa Neuser; Laurent Seugnet; Kazuhiko Kume; Magali Iché-Torres; Marlène Cassar; Roland Strauss; Thomas Preat; Jay Hirsh; Serge Birman

The neuromodulatory function of dopamine (DA) is an inherent feature of nervous systems of all animals. To learn more about the function of neural DA in Drosophila, we generated mutant flies that lack tyrosine hydroxylase, and thus DA biosynthesis, selectively in the nervous system. We found that DA is absent or below detection limits in the adult brain of these flies. Despite this, they have a lifespan similar to WT flies. These mutants show reduced activity, extended sleep time, locomotor deficits that increase with age, and they are hypophagic. Whereas odor and electrical shock avoidance are not affected, aversive olfactory learning is abolished. Instead, DA-deficient flies have an apparently “masochistic” tendency to prefer the shock-associated odor 2 h after conditioning. Similarly, sugar preference is absent, whereas sugar stimulation of foreleg taste neurons induces normal proboscis extension. Feeding the DA precursor l-DOPA to adults substantially rescues the learning deficit as well as other impaired behaviors that were tested. DA-deficient flies are also defective in positive phototaxis, without alteration in visual perception and optomotor response. Surprisingly, visual tracking is largely maintained, and these mutants still possess an efficient spatial orientation memory. Our findings show that flies can perform complex brain functions in the absence of neural DA, whereas specific behaviors involving, in particular, arousal and choice require normal levels of this neuromodulator.


Current Biology | 2010

Roles of dopamine in circadian rhythmicity and extreme light sensitivity of circadian entrainment

Jay Hirsh; Thomas Riemensperger; Hélène Coulom; Magali Iché; Jamie Coupar; Serge Birman

Light has profound behavioral effects on almost all animals, and nocturnal animals show sensitivity to extremely low light levels [1-4]. Crepuscular, i.e., dawn/dusk-active animals such as Drosophila melanogaster are thought to show far less sensitivity to light [5-8]. Here we report that Drosophila respond to extremely low levels of monochromatic blue light. Light levels three to four orders of magnitude lower than previously believed impact circadian entrainment and the light-induced stimulation of locomotion known as positive behavioral masking. We use GAL4;UAS-mediated rescue of tyrosine hydroxylase (DTH) mutant (ple) flies to study the roles of dopamine in these processes. We present evidence for two roles of dopamine in circadian behaviors. First, rescue with either a wild-type DTH or a DTH mutant lacking neural expression leads to weak circadian rhythmicity, indicating a role for strictly regulated DTH and dopamine in robust circadian rhythmicity. Second, the DTH rescue strain deficient in neural dopamine selectively shows a defect in circadian entrainment to low light, whereas another response to light, positive masking, has normal light sensitivity. These findings imply separable pathways from light input to the behavioral outputs of masking versus circadian entrainment, with only the latter dependent on dopamine.


PLOS ONE | 2012

The serotonergic central nervous system of the Drosophila larva: anatomy and behavioral function

Annina Huser; Astrid Rohwedder; Anthi A. Apostolopoulou; Annekathrin Widmann; Johanna E. Pfitzenmaier; Elena M. Maiolo; Mareike Selcho; Dennis Pauls; Alina von Essen; Tripti Gupta; Simon G. Sprecher; Serge Birman; Thomas Riemensperger; Reinhard F. Stocker; Andreas S. Thum

The Drosophila larva has turned into a particularly simple model system for studying the neuronal basis of innate behaviors and higher brain functions. Neuronal networks involved in olfaction, gustation, vision and learning and memory have been described during the last decade, often up to the single-cell level. Thus, most of these sensory networks are substantially defined, from the sensory level up to third-order neurons. This is especially true for the olfactory system of the larva. Given the wealth of genetic tools in Drosophila it is now possible to address the question how modulatory systems interfere with sensory systems and affect learning and memory. Here we focus on the serotonergic system that was shown to be involved in mammalian and insect sensory perception as well as learning and memory. Larval studies suggested that the serotonergic system is involved in the modulation of olfaction, feeding, vision and heart rate regulation. In a dual anatomical and behavioral approach we describe the basic anatomy of the larval serotonergic system, down to the single-cell level. In parallel, by expressing apoptosis-inducing genes during embryonic and larval development, we ablate most of the serotonergic neurons within the larval central nervous system. When testing these animals for naïve odor, sugar, salt and light perception, no profound phenotype was detectable; even appetitive and aversive learning was normal. Our results provide the first comprehensive description of the neuronal network of the larval serotonergic system. Moreover, they suggest that serotonin per se is not necessary for any of the behaviors tested. However, our data do not exclude that this system may modulate or fine-tune a wide set of behaviors, similar to its reported function in other insect species or in mammals. Based on our observations and the availability of a wide variety of genetic tools, this issue can now be addressed.


Human Molecular Genetics | 2012

Alternative oxidase rescues mitochondria-mediated dopaminergic cell loss in Drosophila

Dickon M. Humphrey; Richard B. Parsons; Zoe N. Ludlow; Thomas Riemensperger; Giovanni Esposito; Patrik Verstreken; Howard T. Jacobs; Serge Birman; Frank Hirth

Mitochondrial dysfunction is commonly observed in degenerative disorders, including Alzheimers and Parkinsons disease that are characterized by the progressive and selective loss of neuronal subpopulations. It is currently unclear, however, whether mitochondrial dysfunction is primary or secondary to other pathogenic processes that eventually lead to age-related neurodegeneration. Here we establish an in vivo Drosophila model of mitochondrial dysfunction by downregulating the catalytic subunit of mitochondrial DNA (mtDNA) polymerase in cholinergic, serotonergic and dopaminergic neurons. The resulting flies are characterized by lowered respiratory chain activity, premature aging, age-related motor deficits as well as adult onset, progressive and cell-type-specific, dopaminergic neurodegeneration. Using this model, we find that associated lethality can be partially rescued by targeting PINK1/parkin signaling or Drp1, both of which have been implicated in mitochondrial dynamics and Parkinsons disease. Bypassing mitochondrial complex III/IV deficiencies with Alternative oxidase (AOX), however, fully restores ATP levels and prevents dopaminergic neurodegeneration. In contrast, ATP levels and neurodegeneration are not rescued when mitochondrial complex I deficiencies are bypassed with NADH-Q oxidoreductase. Our results demonstrate that mtDNA-mediated mitochondrial dysfunction can cause age-related and cell-type-specific neurodegeneration which AOX is able to alleviate and indicate that AOX or its surrogates may prove useful as a therapeutic tool for limiting respiratory chain deficiencies caused by mtDNA decline in healthy aging and neurodegenerative disease.


Biochimica et Biophysica Acta | 2012

Optical calcium imaging in the nervous system of Drosophila melanogaster

Thomas Riemensperger; Ulrike Pech; Shubham Dipt; André Fiala

BACKGROUND Drosophila melanogaster is one of the best-studied model organisms in biology, mainly because of the versatility of methods by which heredity and specific expression of genes can be traced and manipulated. Sophisticated genetic tools have been developed to express transgenes in selected cell types, and these techniques can be utilized to target DNA-encoded fluorescence probes to genetically defined subsets of neurons. Neuroscientists make use of this approach to monitor the activity of restricted types or subsets of neurons in the brain and the peripheral nervous system. Since membrane depolarization is typically accompanied by an increase in intracellular calcium ions, calcium-sensitive fluorescence proteins provide favorable tools to monitor the spatio-temporal activity across groups of neurons. SCOPE OF REVIEW Here we describe approaches to perform optical calcium imaging in Drosophila in consideration of various calcium sensors and expression systems. In addition, we outline by way of examples for which particular neuronal systems in Drosophila optical calcium imaging have been used. Finally, we exemplify briefly how optical calcium imaging in the brain of Drosophila can be carried out in practice. MAJOR CONCLUSIONS AND GENERAL SIGNIFICANCE Drosophila provides an excellent model organism to combine genetic expression systems with optical calcium imaging in order to investigate principles of sensory coding, neuronal plasticity, and processing of neuronal information underlying behavior. This article is part of a Special Issue entitled Biochemical, Biophysical and Genetic Approaches to Intracellular Calcium Signaling.


Frontiers in Neural Circuits | 2013

Mushroom body miscellanea : transgenic Drosophila strains expressing anatomical and physiological sensor proteins in Kenyon cells

Ulrike Pech; Shubham Dipt; Jonas Barth; Priyanka Singh; Mandy Jauch; Andreas S. Thum; André Fiala; Thomas Riemensperger

The fruit fly Drosophila melanogaster represents a key model organism for analyzing how neuronal circuits regulate behavior. The mushroom body in the central brain is a particularly prominent brain region that has been intensely studied in several insect species and been implicated in a variety of behaviors, e.g., associative learning, locomotor activity, and sleep. Drosophila melanogaster offers the advantage that transgenes can be easily expressed in neuronal subpopulations, e.g., in intrinsic mushroom body neurons (Kenyon cells). A number of transgenes has been described and engineered to visualize the anatomy of neurons, to monitor physiological parameters of neuronal activity, and to manipulate neuronal function artificially. To target the expression of these transgenes selectively to specific neurons several sophisticated bi- or even multipartite transcription systems have been invented. However, the number of transgenes that can be combined in the genome of an individual fly is limited in practice. To facilitate the analysis of the mushroom body we provide a compilation of transgenic fruit flies that express transgenes under direct control of the Kenyon-cell specific promoter, mb247. The transgenes expressed are fluorescence reporters to analyze neuroanatomical aspects of the mushroom body, proteins to restrict ectopic gene expression to mushroom bodies, or fluorescent sensors to monitor physiological parameters of neuronal activity of Kenyon cells. Some of the transgenic animals compiled here have been published already, whereas others are novel and characterized here for the first time. Overall, the collection of transgenic flies expressing sensor and reporter genes in Kenyon cells facilitates combinations with binary transcription systems and might, ultimately, advance the physiological analysis of mushroom body function.


Archive | 2012

Calcium Imaging of Neural Activity in the Olfactory System of Drosophila

Antonia Strutz; Thomas Völler; Thomas Riemensperger; André Fiala; Silke Sachse

Many animals are able to detect a plethora of diverse odorants using arrays of odorant receptors located on the olfactory organs. The olfactory information is subsequently encoded and processed by an overlapping, combinatorial activity of neurons forming complex neural circuits in the brain. In order to functionally dissect this neural circuitry, optical recording techniques allow visualizing spatial as well as temporal aspects of odor representations in populations of olfactory neurons. The fruit fl y Drosophila melanogaster has emerged as a highly suitable model system for olfactory research as it allows for the combination of genetic, molecular and physiological analyses. Genes of interest can be ectopically expressed in target regions using different binary transcriptional systems. Thereby, fl uorescent calcium indicators can be expressed to monitor neuronal activity in genetically de fi ned subsets of neurons. In this chapter we describe various available genetically encoded calcium sensors (GECIs) and the binary transcriptional systems available for Drosophila to express these GECIs in olfactory neurons. We will explain step-by-step methods for fl y brain preparation, introduce different odor application devices, and describe the components needed using a wide fi eld or two-photon imaging system including data acquisition and analysis. Overall, this review provides a guideline for optically monitoring the spatiotemporal neuronal activity evoked by odorants in the Drosophila brain.


Nature Communications | 2014

Synthetic retinal analogues modify the spectral and kinetic characteristics of microbial rhodopsin optogenetic tools

N. Azimihashemi; Karen Erbguth; A. Vogt; Thomas Riemensperger; E. Rauch; David H. Woodmansee; Jatin Nagpal; Martin Brauner; Mordechai Sheves; André Fiala; L. Kattner; Dirk Trauner; Peter Hegemann; Alexander Gottschalk; Jana F. Liewald

Optogenetic tools have become indispensable in neuroscience to stimulate or inhibit excitable cells by light. Channelrhodopsin-2 (ChR2) variants have been established by mutating the opsin backbone or by mining related algal genomes. As an alternative strategy, we surveyed synthetic retinal analogues combined with microbial rhodopsins for functional and spectral properties, capitalizing on assays in C. elegans, HEK cells and larval Drosophila. Compared with all-trans retinal (ATR), Dimethylamino-retinal (DMAR) shifts the action spectra maxima of ChR2 variants H134R and H134R/T159C from 480 to 520 nm. Moreover, DMAR decelerates the photocycle of ChR2(H134R) and (H134R/T159C), thereby reducing the light intensity required for persistent channel activation. In hyperpolarizing archaerhodopsin-3 and Mac, naphthyl-retinal and thiophene-retinal support activity alike ATR, yet at altered peak wavelengths. Our experiments enable applications of retinal analogues in colour tuning and altering photocycle characteristics of optogenetic tools, thereby increasing the operational light sensitivity of existing cell lines or transgenic animals.


Frontiers in Behavioral Neuroscience | 2014

Induction of aversive learning through thermogenetic activation of Kenyon cell ensembles in Drosophila

David Vasmer; Atefeh Pooryasin; Thomas Riemensperger; André Fiala

Drosophila represents a model organism to analyze neuronal mechanisms underlying learning and memory. Kenyon cells of the Drosophila mushroom body are required for associative odor learning and memory retrieval. But is the mushroom body sufficient to acquire and retrieve an associative memory? To answer this question we have conceived an experimental approach to bypass olfactory sensory input and to thermogenetically activate sparse and random ensembles of Kenyon cells directly. We found that if the artifical activation of Kenyon cell ensembles coincides with a salient, aversive stimulus learning was induced. The animals adjusted their behavior in a subsequent test situation and actively avoided reactivation of these Kenyon cells. Our results show that Kenyon cell activity in coincidence with a salient aversive stimulus can suffice to form an associative memory. Memory retrieval is characterized by a closed feedback loop between a behavioral action and the reactivation of sparse ensembles of Kenyon cells.

Collaboration


Dive into the Thomas Riemensperger's collaboration.

Top Co-Authors

Avatar

André Fiala

University of Göttingen

View shared research outputs
Top Co-Authors

Avatar

Serge Birman

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Ulrike Pech

University of Göttingen

View shared research outputs
Top Co-Authors

Avatar

Shubham Dipt

University of Göttingen

View shared research outputs
Top Co-Authors

Avatar

Jonas Barth

University of Göttingen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jay Hirsh

University of Virginia

View shared research outputs
Top Co-Authors

Avatar

Hélène Coulom

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

A. Vogt

Humboldt University of Berlin

View shared research outputs
Researchain Logo
Decentralizing Knowledge