Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thomas S. Churcher is active.

Publication


Featured researches published by Thomas S. Churcher.


PLOS Medicine | 2012

Hitting hotspots: spatial targeting of malaria for control and elimination.

Teun Bousema; Jamie T. Griffin; Robert W. Sauerwein; David L. Smith; Thomas S. Churcher; Willem Takken; Azra C. Ghani; Chris Drakeley; Roly Gosling

Teun Bousema and colleagues argue that targeting malaria “hotspots” is a highly efficient way to reduce malaria transmission at all levels of transmission intensity.


Evolution | 2013

THE IMPORTANCE OF MOSQUITO BEHAVIOURAL ADAPTATIONS TO MALARIA CONTROL IN AFRICA

Michelle L. Gatton; Nakul Chitnis; Thomas S. Churcher; Martin J. Donnelly; Azra C. Ghani; H. Charles J. Godfray; Fred Gould; Ian M. Hastings; John Marshall; Hilary Ranson; Mark Rowland; Jeffrey Shaman; Steve W. Lindsay

Over the past decade the use of long‐lasting insecticidal nets (LLINs), in combination with improved drug therapies, indoor residual spraying (IRS), and better health infrastructure, has helped reduce malaria in many African countries for the first time in a generation. However, insecticide resistance in the vector is an evolving threat to these gains. We review emerging and historical data on behavioral resistance in response to LLINs and IRS. Overall the current literature suggests behavioral and species changes may be emerging, but the data are sparse and, at times unconvincing. However, preliminary modeling has demonstrated that behavioral resistance could have significant impacts on the effectiveness of malaria control. We propose seven recommendations to improve understanding of resistance in malaria vectors. Determining the public health impact of physiological and behavioral insecticide resistance is an urgent priority if we are to maintain the significant gains made in reducing malaria morbidity and mortality.


Nature | 2015

A novel multiple-stage antimalarial agent that inhibits protein synthesis

Beatriz Baragaña; Irene Hallyburton; Marcus C. S. Lee; Neil R. Norcross; Raffaella Grimaldi; Thomas D. Otto; William R. Proto; Andrew M. Blagborough; Stephan Meister; Grennady Wirjanata; Andrea Ruecker; Leanna M. Upton; Tara S. Abraham; Mariana Justino de Almeida; Anupam Pradhan; Achim Porzelle; María Santos Martínez; Judith M. Bolscher; Andrew Woodland; Suzanne Norval; Fabio Zuccotto; John Thomas; Frederick R. C. Simeons; Laste Stojanovski; Maria Osuna-Cabello; Patrick M. Brock; Thomas S. Churcher; Katarzyna A. Sala; Sara E. Zakutansky; María Belén Jiménez-Díaz

There is an urgent need for new drugs to treat malaria, with broad therapeutic potential and novel modes of action, to widen the scope of treatment and to overcome emerging drug resistance. Here we describe the discovery of DDD107498, a compound with a potent and novel spectrum of antimalarial activity against multiple life-cycle stages of the Plasmodium parasite, with good pharmacokinetic properties and an acceptable safety profile. DDD107498 demonstrates potential to address a variety of clinical needs, including single-dose treatment, transmission blocking and chemoprotection. DDD107498 was developed from a screening programme against blood-stage malaria parasites; its molecular target has been identified as translation elongation factor 2 (eEF2), which is responsible for the GTP-dependent translocation of the ribosome along messenger RNA, and is essential for protein synthesis. This discovery of eEF2 as a viable antimalarial drug target opens up new possibilities for drug discovery.


eLife | 2013

Predicting mosquito infection from Plasmodium falciparum gametocyte density and estimating the reservoir of infection

Thomas S. Churcher; Teun Bousema; Martin Walker; Chris Drakeley; Petra Schneider; André Lin Ouédraogo; María-Gloria Basáñez

Transmission reduction is a key component of global efforts to control and eliminate malaria; yet, it is unclear how the density of transmission stages (gametocytes) influences infection (proportion of mosquitoes infected). Human to mosquito transmission was assessed using 171 direct mosquito feeding assays conducted in Burkina Faso and Kenya. Plasmodium falciparum infects Anopheles gambiae efficiently at low densities (4% mosquitoes at 1/µl blood), although substantially more (>200/µl) are required to increase infection further. In a site in Burkina Faso, children harbour more gametocytes than adults though the non-linear relationship between gametocyte density and mosquito infection means that (per person) they only contribute slightly more to transmission. This method can be used to determine the reservoir of infection in different endemic settings. Interventions reducing gametocyte density need to be highly effective in order to halt human–mosquito transmission, although their use can be optimised by targeting those contributing the most to transmission. DOI: http://dx.doi.org/10.7554/eLife.00626.001


Lancet Infectious Diseases | 2008

Effect of single-dose ivermectin on Onchocerca volvulus: a systematic review and meta-analysis

María-Gloria Basáñez; Sébastien Pion; Eve Boakes; João A. N. Filipe; Thomas S. Churcher; Michel Boussinesq

The broad-spectrum antiparasitic drug ivermectin was licensed for use against onchocerciasis in 1987, yet the mechanisms by which it exerts a fast decrease and long-lasting suppression of Onchocerca volvulus microfilaridermia, and inhibition of microfilarial release by female worms remain largely unknown. A better understanding of the effects of ivermectin on O volvulus microfilariae and macrofilariae is crucial to improve our ability to predict the long-term effect of treatment. We did a systematic review of individual and population-based ivermectin trials to investigate the temporal dynamics of the drugs microfilaricidal and embryostatic efficacy after administration of a single, standard dose (150 microg/kg). Meta-analyses on data from 26 microfilarial and 15 macrofilarial studies were linked by a mathematical model describing the dynamics of potentially fertile female parasites to skin microfilariae. The model predicts that after treatment, microfilaridermia would be reduced by half after 24 h, by 85% after 72 h, by 94% after 1 week, and by 98-99% after 1-2 months, the latter also corresponding to the time when the fraction of females harbouring live microfilariae is at its lowest (reduced by around 70% from its original value). Our results provide a baseline microfilarial skin repopulation curve against which to compare studies done after long-term treatment.


PLOS ONE | 2012

Mosquito Feeding Assays to Determine the Infectiousness of Naturally Infected Plasmodium falciparum Gametocyte Carriers

Teun Bousema; Rhoel R. Dinglasan; Isabelle Morlais; Louis C. Gouagna; Travis van Warmerdam; Parfait Awono-Ambene; Sarah Bonnet; Mouctar Diallo; Mamadou Coulibaly; Timoléon Tchuinkam; Bert Mulder; Geoff Targett; Chris Drakeley; Colin J. Sutherland; Vincent Robert; Ogobara K. Doumbo; Yeya Tiemoko Touré; Patricia M. Graves; Will Roeffen; Robert W. Sauerwein; Ashley Birkett; Emily Locke; Merribeth J. Morin; Yimin Wu; Thomas S. Churcher

Introduction In the era of malaria elimination and eradication, drug-based and vaccine-based approaches to reduce malaria transmission are receiving greater attention. Such interventions require assays that reliably measure the transmission of Plasmodium from humans to Anopheles mosquitoes. Methods We compared two commonly used mosquito feeding assay procedures: direct skin feeding assays and membrane feeding assays. Three conditions under which membrane feeding assays are performed were examined: assays with i) whole blood, ii) blood pellets resuspended with autologous plasma of the gametocyte carrier, and iii) blood pellets resuspended with heterologous control serum. Results 930 transmission experiments from Cameroon, The Gambia, Mali and Senegal were included in the analyses. Direct skin feeding assays resulted in higher mosquito infection rates compared to membrane feeding assays (odds ratio 2.39, 95% confidence interval 1.94–2.95) with evident heterogeneity between studies. Mosquito infection rates in membrane feeding assays and direct skin feeding assays were strongly correlated (p<0.0001). Replacing the plasma of the gametocyte donor with malaria naïve control serum resulted in higher mosquito infection rates compared to own plasma (OR 1.92, 95% CI 1.68–2.19) while the infectiousness of gametocytes may be reduced during the replacement procedure (OR 0.60, 95% CI 0.52–0.70). Conclusions Despite a higher efficiency of direct skin feeding assays, membrane feeding assays appear suitable tools to compare the infectiousness between individuals and to evaluate transmission-reducing interventions. Several aspects of membrane feeding procedures currently lack standardization; this variability makes comparisons between laboratories challenging and should be addressed to facilitate future testing of transmission-reducing interventions.


PLOS ONE | 2011

The potential contribution of mass treatment to the control of Plasmodium falciparum malaria.

Lucy C. Okell; Jamie T. Griffin; Immo Kleinschmidt; T. Déirdre Hollingsworth; Thomas S. Churcher; Michael White; Teun Bousema; Chris Drakeley; Azra C. Ghani

Mass treatment as a means to reducing P. falciparum malaria transmission was used during the first global malaria eradication campaign and is increasingly being considered for current control programmes. We used a previously developed mathematical transmission model to explore both the short and long-term impact of possible mass treatment strategies in different scenarios of endemic transmission. Mass treatment is predicted to provide a longer-term benefit in areas with lower malaria transmission, with reduced transmission levels for at least 2 years after mass treatment is ended in a scenario where the baseline slide-prevalence is 5%, compared to less than one year in a scenario with baseline slide-prevalence at 50%. However, repeated annual mass treatment at 80% coverage could achieve around 25% reduction in infectious bites in moderate-to-high transmission settings if sustained. Using vector control could reduce transmission to levels at which mass treatment has a longer-term impact. In a limited number of settings (which have isolated transmission in small populations of 1000–10,000 with low-to-medium levels of baseline transmission) we find that five closely spaced rounds of mass treatment combined with vector control could make at least temporary elimination a feasible goal. We also estimate the effects of using gametocytocidal treatments such as primaquine and of restricting treatment to parasite-positive individuals. In conclusion, mass treatment needs to be repeated or combined with other interventions for long-term impact in many endemic settings. The benefits of mass treatment need to be carefully weighed against the risks of increasing drug selection pressure.


Proceedings of the Royal Society of London B: Biological Sciences | 2008

Persistence of the emerging pathogen Batrachochytrium dendrobatidis outside the amphibian host greatly increases the probability of host extinction.

Kate M. Mitchell; Thomas S. Churcher; Trenton W. J. Garner; Matthew C. Fisher

Pathogens do not normally drive their hosts to extinction; however, Batrachochytrium dendrobatidis, which causes amphibian chytridiomycosis, has been able to do so. Theory predicts that extinction can be caused by long-lived or saprobic free-living stages. The hypothesis that such a stage occurs in B. dendrobatidis is supported by the recent discovery of an apparently encysted form of the pathogen. To investigate the effect of a free-living stage of B. dendrobatidis on host population dynamics, a mathematical model was developed to describe the introduction of chytridiomycosis into a breeding population of Bufo bufo, parametrized from laboratory infection and transmission experiments. The model predicted that the longer that B. dendrobatidis was able to persist in water, either due to an increased zoospore lifespan or saprobic reproduction, the more likely it was that it could cause local B. bufo extinction (defined as decrease below a threshold level). Establishment of endemic B. dendrobatidis infection in B. bufo, with severe host population depression, was also possible, in agreement with field observations. Although this model is able to predict clear trends, more precise predictions will only be possible when the life history of B. dendrobatidis, including free-living stages of the life cycle, is better understood.


Malaria Journal | 2009

Anopheles mortality is both age- and Plasmodium-density dependent: implications for malaria transmission

Emma J Dawes; Thomas S. Churcher; Shijie Zhuang; Robert E. Sinden; María-Gloria Basáñez

BackgroundDaily mortality is an important determinant of a vectors ability to transmit pathogens. Original simplifying assumptions in malaria transmission models presume vector mortality is independent of age, infection status and parasite load. Previous studies illustrate conflicting evidence as to the importance of Plasmodium-induced vector mortality, but very few studies to date have considered the effect of infection density on mosquito survival.MethodsA series of three experiments were conducted, each consisting of four cages of 400-1,000 Anopheles stephensi mosquitoes fed on blood infected with different Plasmodium berghei ookinete densities per microlitre of blood. Twice daily the numbers of dead mosquitoes in each group were recorded, and on alternate days a sample of live mosquitoes from each group were dissected to determine parasite density in both midgut and salivary glands.ResultsSurvival analyses indicate that mosquito mortality is both age- and infection intensity-dependent. Mosquitoes experienced an initially high, partly feeding-associated, mortality rate, which declined to a minimum before increasing with mosquito age and parasite intake. As a result, the life expectancy of a mosquito is shown to be dependent on both insect age and the density of Plasmodium infection.ConclusionThese results contribute to understanding in greater detail the processes that influence sporogony in the mosquito, indicate the impact that parasite density could have on malaria transmission dynamics, and have implications for the design, development, and evaluation of transmission-blocking strategies.


Parasitology | 2005

Density dependence and overdispersion in the transmission of helminth parasites

Thomas S. Churcher; Neil M. Ferguson; María-Gloria Basáñez

The influence of density-dependent processes on the transmission of parasitic helminths is determined by both the severity of the regulatory constraints and the degree of parasite overdispersion among the host population. We investigate how overdispersed parasite distributions among humans influence transmission levels in both directly- and indirectly-transmitted nematodes (Ascaris lumbricoides and Onchocerca volvulus). While past work has assumed, for simplicity, that density dependence acts on the average worm load, here we model density-dependence as acting on individual parasite burdens before averaging across hosts. A composite parameter, which we call the effective transmission contribution, is devised to measure the number of transmission stages contributed by a given worm burden after incorporating over-dispersion in adult worm mating probabilities and other density-dependent mechanisms. Results indicate that the more overdispersed the parasite population, the greater the effect of density dependence upon its transmission dynamics. Strong regulation and parasite overdispersion make the relationship between mean worm burden and its effective contribution to transmission highly non-linear. Consequently, lowering the intensity of infection in a host population using chemotherapy may produce only a small decline in transmission (relative to its initial endemic level). Our analysis indicates that when parasite burden is low, intermediate levels of parasite clustering maximize transmission. Implications are discussed in relation to existing control programmes and the spread of anthelmintic resistance.

Collaboration


Dive into the Thomas S. Churcher's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Teun Bousema

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Isabelle Morlais

Institut de recherche pour le développement

View shared research outputs
Top Co-Authors

Avatar

Dari F. Da

Institut de recherche pour le développement

View shared research outputs
Top Co-Authors

Avatar

Anna Cohuet

Institut de recherche pour le développement

View shared research outputs
Researchain Logo
Decentralizing Knowledge