Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thomas Sandmann is active.

Publication


Featured researches published by Thomas Sandmann.


Journal of Clinical Oncology | 2015

Patients With Proneural Glioblastoma May Derive Overall Survival Benefit From the Addition of Bevacizumab to First-Line Radiotherapy and Temozolomide: Retrospective Analysis of the AVAglio Trial

Thomas Sandmann; Richard Bourgon; Josep Garcia; Congfen Li; Timothy F. Cloughesy; Olivier Chinot; Wolfgang Wick; Ryo Nishikawa; Warren P. Mason; Roger Henriksson; Frank Saran; Albert Lai; Nicola Moore; Samir Kharbanda; Franklin Peale; Priti Hegde; Lauren E. Abrey; Heidi S. Phillips; Carlos Bais

PURPOSE The AVAglio (Avastin in Glioblastoma) and RTOG-0825 randomized, placebo-controlled phase III trials in newly diagnosed glioblastoma reported prolonged progression-free survival (PFS), but not overall survival (OS), with the addition of bevacizumab to radiotherapy plus temozolomide. To establish whether certain patient subgroups derived an OS benefit from the addition of bevacizumab to first-line standard-of-care therapy, AVAglio patients were retrospectively evaluated for molecular subtype, and bevacizumab efficacy was assessed for each patient subgroup. PATIENTS AND METHODS A total of 349 pretreatment specimens (bevacizumab arm, n = 171; placebo arm, n = 178) from AVAglio patients (total, N = 921) were available for biomarker analysis. Samples were profiled for gene expression and isocitrate dehydrogenase 1 (IDH1) mutation status and classified into previously identified molecular subtypes. PFS and OS were assessed within each subtype. RESULTS A multivariable analysis accounting for prognostic covariates revealed that bevacizumab conferred a significant OS advantage versus placebo for patients with proneural IDH1 wild-type tumors (17.1 v 12.8 months, respectively; hazard ratio, 0.43; 95% CI, 0.26 to 0.73; P = .002). This analysis also revealed an interaction between the proneural subtype biomarker and treatment arm (P = .023). The group of patients with mesenchymal and proneural tumors derived a PFS benefit from bevacizumab compared with placebo; however, this translated to an OS benefit in the proneural subset only. CONCLUSION Retrospective analysis of AVAglio data suggests that patients with IDH1 wild-type proneural glioblastoma may derive an OS benefit from first-line bevacizumab treatment. The predictive value of the proneural subtype observed in AVAglio should be validated in an independent data set.


Nature Protocols | 2007

ChIP-on-chip protocol for genome-wide analysis of transcription factor binding in Drosophila melanogaster embryos

Thomas Sandmann; Janus S Jakobsen; Eileen E. M. Furlong

This protocol describes a method to detect in vivo associations between proteins and DNA in developing Drosophila embryos. It combines formaldehyde crosslinking and immunoprecipitation of protein-bound sequences with genome-wide analysis using microarrays. After crosslinking, nuclei are enriched using differential centrifugation and the chromatin is sheared by sonication. Antibodies specifically recognizing wild-type protein or, alternatively, a genetically encoded epitope tag are used to enrich for specifically bound DNA sequences. After purification and polymerase chain reaction-based amplification, the samples are fluorescently labeled and hybridized to genomic tiling microarrays. This protocol has been successfully used to study different tissue-specific transcription factors, and is generally applicable to in vivo analysis of any DNA-binding proteins in Drosophila embryos. The full protocol, including the collection of embryos and the collection of raw microarray data, can be completed within 10 days.


PLOS Genetics | 2013

Mondo/ChREBP-Mlx-Regulated Transcriptional Network Is Essential for Dietary Sugar Tolerance in Drosophila

Essi Havula; Tuulia Hyötyläinen; Heini Seppälä; Kiran Hasygar; Petri Auvinen; Matej Orešič; Thomas Sandmann; Ville Hietakangas

Sugars are important nutrients for many animals, but are also proposed to contribute to overnutrition-derived metabolic diseases in humans. Understanding the genetic factors governing dietary sugar tolerance therefore has profound biological and medical significance. Paralogous Mondo transcription factors ChREBP and MondoA, with their common binding partner Mlx, are key sensors of intracellular glucose flux in mammals. Here we report analysis of the in vivo function of Drosophila melanogaster Mlx and its binding partner Mondo (ChREBP) in respect to tolerance to dietary sugars. Larvae lacking mlx or having reduced mondo expression show strikingly reduced survival on a diet with moderate or high levels of sucrose, glucose, and fructose. mlx null mutants display widespread changes in lipid and phospholipid profiles, signs of amino acid catabolism, as well as strongly elevated circulating glucose levels. Systematic loss-of-function analysis of Mlx target genes reveals that circulating glucose levels and dietary sugar tolerance can be genetically uncoupled: Krüppel-like transcription factor Cabut and carbonyl detoxifying enzyme Aldehyde dehydrogenase type III are essential for dietary sugar tolerance, but display no influence on circulating glucose levels. On the other hand, Phosphofructokinase 2, a regulator of the glycolysis pathway, is needed for both dietary sugar tolerance and maintenance of circulating glucose homeostasis. Furthermore, we show evidence that fatty acid synthesis, which is a highly conserved Mondo-Mlx-regulated process, does not promote dietary sugar tolerance. In contrast, survival of larvae with reduced fatty acid synthase expression is sugar-dependent. Our data demonstrate that the transcriptional network regulated by Mondo-Mlx is a critical determinant of the healthful dietary spectrum allowing Drosophila to exploit sugar-rich nutrient sources.


Acta Neuropathologica | 2013

Hypoxia and oxygenation induce a metabolic switch between pentose phosphate pathway and glycolysis in glioma stem-like cells

Annegret Kathagen; Alexander Schulte; Gerd Ulrich Balcke; Heidi S. Phillips; Tobias Martens; Jakob Matschke; Hauke S. Günther; Robert Soriano; Zora Modrusan; Thomas Sandmann; Carsten Kuhl; Alain Tissier; Mareike Holz; Lutz A. Krawinkel; Markus Glatzel; Manfred Westphal; Katrin Lamszus

Fluctuations in oxygen tension during tissue remodeling impose a major metabolic challenge in human tumors. Stem-like tumor cells in glioblastoma, the most common malignant brain tumor, possess extraordinary metabolic flexibility, enabling them to initiate growth even under non-permissive conditions. We identified a reciprocal metabolic switch between the pentose phosphate pathway (PPP) and glycolysis in glioblastoma stem-like (GS) cells. Expression of PPP enzymes is upregulated by acute oxygenation but downregulated by hypoxia, whereas glycolysis enzymes, particularly those of the preparatory phase, are regulated inversely. Glucose flux through the PPP is reduced under hypoxia in favor of flux through glycolysis. PPP enzyme expression is elevated in human glioblastomas compared to normal brain, especially in highly proliferative tumor regions, whereas expression of parallel preparatory phase glycolysis enzymes is reduced in glioblastomas, except for strong upregulation in severely hypoxic regions. Hypoxia stimulates GS cell migration but reduces proliferation, whereas oxygenation has opposite effects, linking the metabolic switch to the “go or grow” potential of the cells. Our findings extend Warburg’s observation that tumor cells predominantly utilize glycolysis for energy production, by suggesting that PPP activity is elevated in rapidly proliferating tumor cells but suppressed by acute severe hypoxic stress, favoring glycolysis and migration to protect cells against hypoxic cell damage.


PLOS Genetics | 2010

Combinatorial Binding Leads to Diverse Regulatory Responses: Lmd Is a Tissue-Specific Modulator of Mef2 Activity

Paulo M. F. Cunha; Thomas Sandmann; E. Hilary Gustafson; Lucia Ciglar; Michael P. Eichenlaub; Eileen E. M. Furlong

Understanding how complex patterns of temporal and spatial expression are regulated is central to deciphering genetic programs that drive development. Gene expression is initiated through the action of transcription factors and their cofactors converging on enhancer elements leading to a defined activity. Specific constellations of combinatorial occupancy are therefore often conceptualized as rigid binding codes that give rise to a common output of spatio-temporal expression. Here, we assessed this assumption using the regulatory input of two essential transcription factors within the Drosophila myogenic network. Mutations in either Myocyte enhancing factor 2 (Mef2) or the zinc-finger transcription factor lame duck (lmd) lead to very similar defects in myoblast fusion, yet the underlying molecular mechanism for this shared phenotype is not understood. Using a combination of ChIP-on-chip analysis and expression profiling of loss-of-function mutants, we obtained a global view of the regulatory input of both factors during development. The majority of Lmd-bound enhancers are co-bound by Mef2, representing a subset of Mef2s transcriptional input during these stages of development. Systematic analyses of the regulatory contribution of both factors demonstrate diverse regulatory roles, despite their co-occupancy of shared enhancer elements. These results indicate that Lmd is a tissue-specific modulator of Mef2 activity, acting as both a transcriptional activator and repressor, which has important implications for myogenesis. More generally, this study demonstrates considerable flexibility in the regulatory output of two factors, leading to additive, cooperative, and repressive modes of co-regulation.


PLOS ONE | 2007

Identification of Novel Drosophila melanogaster MicroRNAs

Thomas Sandmann; Stephen M. Cohen

MicroRNAs (miRNAs) are small non-coding RNAs with important regulatory roles in post-transcriptional regulation of metazoan development, homeostasis and disease. The full set of miRNAs is not known for any species and it is believed that many await discovery. The recent assembly of 15 insect genomes has provided the opportunity to identify novel miRNAs in the fruit fly, Drosophila melanogaster. We have performed a computational screen for novel microRNAs in Drosophila melanogaster by searching for phylogenetically conserved putative pre-miRNA structures. The ability of predicted novel miRNA precursors to be processed to produce miRNAs was experimentally verified in S2 cells and in several cases their endogenous expression at was validated by Northern blots. After experimental validation, the predictions were cross-checked with reference to a newly released set of small RNA sequences. Combining both datasets allowed us to identify 53 novel miRNA loci in the fruit fly genome 22 of which we had predicted computationally. This significantly expands the set of known miRNAs in Drosophila melanogaster. Most novel miRNAs contain unique seed sequences not found in other Drosophila miRNAs and are therefore expected to regulate novel sets of target genes. This data provides the basis for future genetic analysis of miRNA function and will aid the discovery of orthologous sequences in other species.


Cell Reports | 2015

Mondo-Mlx Mediates Organismal Sugar Sensing through the Gli-Similar Transcription Factor Sugarbabe

Jaakko Mattila; Essi Havula; Erja Suominen; Ida Surakka; Riikka Hynynen; Helena Kilpinen; Juho Väänänen; Iiris Hovatta; Reijo Käkelä; Samuli Ripatti; Thomas Sandmann; Ville Hietakangas

The ChREBP/Mondo-Mlx transcription factors are activated by sugars and are essential for sugar tolerance. They promote the conversion of sugars to lipids, but beyond this, their physiological roles are insufficiently understood. Here, we demonstrate that in an organism-wide setting in Drosophila, Mondo-Mlx controls the majority of sugar-regulated genes involved in nutrient digestion and transport as well as carbohydrate, amino acid, and lipid metabolism. Furthermore, human orthologs of the Mondo-Mlx targets display enrichment among gene variants associated with high circulating triglycerides. In addition to direct regulation of metabolic genes, Mondo-Mlx maintains metabolic homeostasis through downstream effectors, including the Activin ligand Dawdle and the Gli-similar transcription factor Sugarbabe. Sugarbabe controls a subset of Mondo-Mlx-dependent processes, including de novo lipogenesis and fatty acid desaturation. In sum, Mondo-Mlx is a master regulator of other sugar-responsive pathways essential for adaptation to a high-sugar diet.


Science | 2015

A cysteine-clamp gene drives embryo polarity in the midge Chironomus

Jeff Klomp; Derek Athy; Chun Wai Kwan; Natasha I. Bloch; Thomas Sandmann; Steffen Lemke; Urs Schmidt-Ott

How to generate head-to-tail polarity in a midge Animal genomes do not remain static but gain and lose essential genes over time. One such case is the bicoid gene of flies. Bicoid plays an important role in early Drosophila development during the generation of head-to-tail polarity, but most flies lack bicoid. Which genes then serve the same function in other insects? Now, Klomp et al. report a structurally unrelated gene that serves essentially the same function as bicoid in a mosquito-related midge but does so through a different genetic mechanism. Science, this issue p. 1040 Structurally unrelated genes in fly and a mosquito-related midge serve the same function by different mechanisms. In the fruit fly Drosophila, head formation is driven by a single gene, bicoid, which generates head-to-tail polarity of the main embryonic axis. Bicoid deficiency results in embryos with tail-to-tail polarity and no head. However, most insects lack bicoid, and the molecular mechanism for establishing head-to-tail polarity is poorly understood. We have identified a gene that establishes head-to-tail polarity of the mosquito-like midge, Chironomus riparius. This gene, named panish, encodes a cysteine-clamp DNA binding domain and operates through a different mechanism than bicoid. This finding, combined with the observation that the phylogenetic distributions of panish and bicoid are limited to specific families of flies, reveals frequent evolutionary changes of body axis determinants and a remarkable opportunity to study gene regulatory network evolution.


Genes & Development | 2009

Drosophila Minus is required for cell proliferation and influences Cyclin E turnover

Sébastien Szuplewski; Thomas Sandmann; Ville Hietakangas; Stephen M. Cohen

Turnover of cyclins plays a major role in oscillatory cyclin-dependent kinase (Cdk) activity and control of cell cycle progression. Here we present a novel cell cycle regulator, called minus, which influences Cyclin E turnover in Drosophila. minus mutants produce defects in cell proliferation, some of which are attributable to persistence of Cyclin E. Minus protein can interact physically with Cyclin E and the SCF Archipelago/Fbw7/Cdc4 ubiquitin-ligase complex. Minus does not affect dMyc, another known SCF(Ago) substrate in Drosophila. We propose that Minus contributes to cell cycle regulation in part by selectively controlling turnover of Cyclin E.


Journal of Clinical Oncology | 2017

Randomized, double-blind, placebo-controlled, multicenter phase II study of onartuzumab plus bevacizumab versus placebo plus bevacizumab in patients with recurrent glioblastoma: Efficacy, safety, and hepatocyte growth factor and O6-methylguanine-DNA methyltransferase biomarker analyses

Timothy F. Cloughesy; Gaetano Finocchiaro; Cristóbal Belda-Iniesta; Lawrence Recht; Alba A. Brandes; Estela Pineda; Tom Mikkelsen; Olivier Chinot; Carmen Balana; David R. Macdonald; Manfred Westphal; Kirsten Hopkins; Michael Weller; Carlos Bais; Thomas Sandmann; Jean Marie Bruey; Hartmut Koeppen; Bo Liu; Wendy Verret; See Chun Phan; David S. Shames

Purpose Bevacizumab regimens are approved for the treatment of recurrent glioblastoma in many countries. Aberrant mesenchymal-epithelial transition factor (MET) expression has been reported in glioblastoma and may contribute to bevacizumab resistance. The phase II study GO27819 investigated the monovalent MET inhibitor onartuzumab plus bevacizumab (Ona + Bev) versus placebo plus bevacizumab (Pla + Bev) in recurrent glioblastoma. Methods At first recurrence after chemoradiation, bevacizumab-naïve patients with glioblastoma were randomly assigned 1:1 to receive Ona (15 mg/kg, once every 3 weeks) + Bev (15 mg/kg, once every 3 weeks) or Pla + Bev until disease progression. The primary end point was progression-free survival by response assessment in neuro-oncology criteria. Secondary end points were overall survival, objective response rate, duration of response, and safety. Exploratory biomarker analyses correlated efficacy with expression levels of MET ligand hepatocyte growth factor, O6-methylguanine-DNA methyltransferase promoter methylation, and glioblastoma subtype. Results Among 129 patients enrolled (Ona + Bev, n = 64; Pla + Bev, n = 65), baseline characteristics were balanced. The median progression-free survival was 3.9 months for Ona + Bev versus 2.9 months for Pla + Bev (hazard ratio, 1.06; 95% CI, 0.72 to 1.56; P = .7444). The median overall survival was 8.8 months for Ona + Bev and 12.6 months for Pla + Bev (hazard ratio, 1.45; 95% CI, 0.88 to 2.37; P = .1389). Grade ≥ 3 adverse events were reported in 38.5% of patients who received Ona + Bev and 35.9% of patients who received Pla + Bev. Exploratory biomarker analyses suggested that patients with high expression of hepatocyte growth factor or unmethylated O6-methylguanine-DNA methyltransferase may benefit from Ona + Bev. Conclusion There was no evidence of further clinical benefit with the addition of onartuzumab to bevacizumab compared with bevacizumab plus placebo in unselected patients with recurrent glioblastoma in this phase II study; however, further investigation into biomarker subgroups is warranted.

Collaboration


Dive into the Thomas Sandmann's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eileen E. M. Furlong

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Olivier Chinot

Aix-Marseille University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge