Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thomas Sandström is active.

Publication


Featured researches published by Thomas Sandström.


Circulation | 2005

Diesel Exhaust Inhalation Causes Vascular Dysfunction and Impaired Endogenous Fibrinolysis

Nicholas L. Mills; Håkan Törnqvist; Simon D. Robinson; Manuel Gonzalez; Kareen Darnley; William MacNee; Nicholas A. Boon; Ken Donaldson; Anders Blomberg; Thomas Sandström; David E. Newby

Background— Although the mechanisms are unknown, it has been suggested that transient exposure to traffic-derived air pollution may be a trigger for acute myocardial infarction. The study aim was to investigate the effects of diesel exhaust inhalation on vascular and endothelial function in humans. Methods and Results— In a double-blind, randomized, cross-over study, 30 healthy men were exposed to diluted diesel exhaust (300 &mgr;g/m3 particulate concentration) or air for 1 hour during intermittent exercise. Bilateral forearm blood flow and inflammatory factors were measured before and during unilateral intrabrachial bradykinin (100 to 1000 pmol/min), acetylcholine (5 to 20 &mgr;g/min), sodium nitroprusside (2 to 8 &mgr;g/min), and verapamil (10 to 100 &mgr;g/min) infusions 2 and 6 hours after exposure. There were no differences in resting forearm blood flow or inflammatory markers after exposure to diesel exhaust or air. Although there was a dose-dependent increase in blood flow with each vasodilator (P<0.0001 for all), this response was attenuated with bradykinin (P<0.05), acetylcholine (P<0.05), and sodium nitroprusside (P<0.001) infusions 2 hours after exposure to diesel exhaust, which persisted at 6 hours. Bradykinin caused a dose-dependent increase in plasma tissue plasminogen activator (P<0.0001) that was suppressed 6 hours after exposure to diesel (P<0.001; area under the curve decreased by 34%). Conclusions— At levels encountered in an urban environment, inhalation of dilute diesel exhaust impairs 2 important and complementary aspects of vascular function in humans: the regulation of vascular tone and endogenous fibrinolysis. These important findings provide a potential mechanism that links air pollution to the pathogenesis of atherothrombosis and acute myocardial infarction.


Nature Reviews Cardiology | 2009

Adverse cardiovascular effects of air pollution

Nicholas L. Mills; Ken Donaldson; Paddy W Hadoke; Nicholas A. Boon; William MacNee; Flemming R. Cassee; Thomas Sandström; Anders Blomberg; David E. Newby

Air pollution is increasingly recognized as an important and modifiable determinant of cardiovascular disease in urban communities. Acute exposure has been linked to a range of adverse cardiovascular events including hospital admissions with angina, myocardial infarction, and heart failure. Long-term exposure increases an individuals lifetime risk of death from coronary heart disease. The main arbiter of these adverse health effects seems to be combustion-derived nanoparticles that incorporate reactive organic and transition metal components. Inhalation of this particulate matter leads to pulmonary inflammation with secondary systemic effects or, after translocation from the lung into the circulation, to direct toxic cardiovascular effects. Through the induction of cellular oxidative stress and proinflammatory pathways, particulate matter augments the development and progression of atherosclerosis via detrimental effects on platelets, vascular tissue, and the myocardium. These effects seem to underpin the atherothrombotic consequences of acute and chronic exposure to air pollution. An increased understanding of the mediators and mechanisms of these processes is necessary if we are to develop strategies to protect individuals at risk and reduce the effect of air pollution on cardiovascular disease.


European Respiratory Journal | 2001

Health effects of diesel exhaust emissions

A Sydbom; Anders Blomberg; S Parnia; Nikolai Stenfors; Thomas Sandström; Sven-Erik Dahlén

Epidemiological studies have demonstrated an association between different levels of air pollution and various health outcomes including mortality, exacerbation of asthma, chronic bronchitis, respiratory tract infections, ischaemic heart disease and stroke. Of the motor vehicle generated air pollutants, diesel exhaust particles account for a highly significant percentage of the particles emitted in many towns and cities. This review is therefore focused on the health effects of diesel exhaust, and especially the particular matter components. Acute effects of diesel exhaust exposure include irritation of the nose and eyes, lung function changes, respiratory changes, headache, fatigue and nausea. Chronic exposures are associated with cough, sputum production and lung function decrements. In addition to symptoms, exposure studies in healthy humans have documented a number of profound inflammatory changes in the airways, notably, before changes in pulmonary function can be detected. It is likely that such effects may be even more detrimental in asthmatics and other subjects with compromised pulmonary function. There are also observations supporting the hypothesis that diesel exhaust is one important factor contributing to the allergy pandemic. For example, in many experimental systems, diesel exhaust particles can be shown to act as adjuvants to allergen and hence increase the sensitization response. Much of the research on adverse effects of diesel exhaust, both in vivo and in vitro, has however been conducted in animals. Questions remain concerning the relevance of exposure levels and whether findings in such models can be extrapolated into humans. It is therefore imperative to further assess acute and chronic effects of diesel exhaust in mechanistic studies with careful consideration of exposure levels. Whenever possible and ethically justified, studies should be carried out in humans.


The Lancet | 1999

Altered lung antioxidant status in patients with mild asthma

Frank J. Kelly; Ian Mudway; Anders Blomberg; Anthony J. Frew; Thomas Sandström

Lung lining fluid ascorbic acid (vitamin C) and alpha-tocopherol (vitamin E) concentrations are low in patients with mild asthma even though blood levels are normal or increased. These findings, along with the presence of increased amounts of oxidised glutathione in their airways, indicate that patients with asthma are subject to increased oxidative stress.


The Lancet Respiratory Medicine | 2013

Analysis of chronic obstructive pulmonary disease exacerbations with the dual bronchodilator QVA149 compared with glycopyrronium and tiotropium (SPARK): a randomised, double-blind, parallel-group study

Jadwiga A. Wedzicha; Marc Decramer; Joachim H. Ficker; Dennis E. Niewoehner; Thomas Sandström; Angel Fowler Taylor; Peter D'Andrea; Christie Arrasate; Hungta Chen; Donald Banerji

BACKGROUND We evaluated the effect of dual, longacting inhaled bronchodilator treatment on exacerbations in patients with severe and very severe chronic obstructive pulmonary disease (COPD). METHODS In this parallel-group study, 2224 patients (aged ≥40 years, Global Initiative for Chronic Obstructive Lung Disease stages III-IV, and one or more moderate COPD exacerbation in the past year) were randomly assigned (1:1:1; via interactive voice response or web system; stratified for smoking status) to once-daily QVA149 (fixed-dose combination of indacaterol 110 μg and glycopyrronium 50 μg), glycopyrronium 50 μg, or tiotropium 18 μg for 64 weeks. Assignment to QVA149 and glycopyrronium was double-blind; tiotropium was open-label. Efficacy was assessed in all patients randomly assigned to treatment groups who received at least one dose of study drug; safety was assessed in all patients who received at least one dose whether or not they were assigned to a group. The primary objective was to show superiority of QVA149 versus glycopyrronium for rate of moderate to severe COPD exacerbations (defined by worsening symptoms and categorised by treatment requirements) during treatment. This completed trial is registered at ClinicalTrials.gov, NCT01120691. FINDINGS Between April 27, 2010, and July 11, 2012, 741 patients were randomly assigned to receive QVA149, 741 to receive glycopyrronium, and 742 to receive tiotropium (729, 739, and 737 patients, respectively, analysed for efficacy). QVA149 significantly reduced the rate of moderate to severe exacerbations versus glycopyrronium by 12% (annualised rate of exacerbations 0·84 [95% CI 0·75-0·94] vs 0·95 [0·85-1·06]; rate ratio 0·88, 95% CI 0·77-0·99, p=0·038). Adverse events (including exacerbations) were reported for 678 (93%) of 729 patients on QVA149, 694 (94%) of 740 on glycopyrronium, and 686 (93%) of 737 on tiotropium. Incidence of serious adverse events was similar between groups (167 [23%] patients on QVA149, 179 [24%] on glycopyrronium, and 165 [22%] on tiotropium); COPD worsening was the most frequent serious adverse event (107 [15%] patients on QVA149, 116 [16%] on glycopyrronium, 87 [12%] on tiotropium). INTERPRETATIONS The dual bronchodilator QVA149 was superior in preventing moderate to severe COPD exacerbations compared with the single longacting antimuscarinic bronchodilator glycopyrronium, with concomitant improvements in lung function and health status. These results indicate the potential of dual bronchodilation as a treatment option for patients with severe and very severe COPD. FUNDING Novartis Pharma AG.


European Respiratory Journal | 2004

Different airway inflammatory responses in asthmatic and healthy humans exposed to diesel

Nikolai Stenfors; C Nordenhall; Sundeep Salvi; Ian Mudway; Margareta Söderberg; Anders Blomberg; Ragnberth Helleday; Jan-Olof Levin; Stephen T. Holgate; Frank J. Kelly; Anthony J. Frew; Thomas Sandström

Particulate matter (PM) pollution adversely affects the airways, with asthmatic subjects thought to be especially sensitive. The authors hypothesised that exposure to diesel exhaust (DE), a major source of PM, would induce airway neutrophilia in healthy subjects, and that either these responses would be exaggerated in subjects with mild allergic asthma, or DE would exacerbate pre-existent allergic airways. Healthy and mild asthmatic subjects were exposed for 2 h to ambient levels of DE (particles with a 50% cut-off aerodynamic diameter of 10 µm (PM10) 108 µg·m−3) and lung function and airway inflammation were assessed. Both groups showed an increase in airway resistance of similar magnitude after DE exposure. Healthy subjects developed airway inflammation 6 h after DE exposure, with airways neutrophilia and lymphocytosis together with an increase in interleukin‐8 (IL‐8) protein in lavage fluid, increased IL‐8 messenger ribonucleic acid expression in the bronchial mucosa and upregulation of the endothelial adhesion molecules. In asthmatic subjects, DE exposure did not induce a neutrophilic response or exacerbate their pre-existing eosinophilic airway inflammation. Epithelial staining for the cytokine IL‐10 was increased after DE in the asthmatic group. Differential effects on the airways of healthy subjects and asthmatics of particles with a 50% cut-off aerodynamic diameter of 10 µm at concentrations below current World Health Organisation air quality standards have been observed in this study. Further work is required to elucidate the significance of these differential responses.


European Heart Journal | 2008

Diesel exhaust inhalation increases thrombus formation in man

Andrew J. Lucking; Magnus Lundbäck; Nicholas L. Mills; Dana Faratian; Stefan Barath; Jamshid Pourazar; Flemming R. Cassee; Ken Donaldson; Nicholas A. Boon; Juan J. Badimon; Thomas Sandström; Anders Blomberg; David E. Newby

AIMS Although the mechanism is unclear, exposure to traffic-derived air pollution is a trigger for acute myocardial infarction (MI). The aim of this study is to investigate the effect of diesel exhaust inhalation on platelet activation and thrombus formation in men. METHODS AND RESULTS In a double-blind randomized crossover study, 20 healthy volunteers were exposed to dilute diesel exhaust (350 microg/m(3)) and filtered air. Thrombus formation, coagulation, platelet activation, and inflammatory markers were measured at 2 and 6 h following exposure. Thrombus formation was measured using the Badimon ex vivo perfusion chamber. Platelet activation was assessed by flow cytometry. Compared with filtered air, diesel exhaust inhalation increased thrombus formation under low- and high-shear conditions by 24% [change in thrombus area 2229 microm(2), 95% confidence interval (CI) 1143-3315 microm(2), P = 0.0002] and 19% (change in thrombus area 2451 microm(2), 95% CI 1190-3712 microm(2), P = 0.0005), respectively. This increased thrombogenicity was seen at 2 and 6 h, using two different diesel engines and fuels. Diesel exhaust also increased platelet-neutrophil and platelet-monocyte aggregates by 52% (absolute change 6%, 95% CI 2-10%, P = 0.01) and 30% (absolute change 3%, 95% CI 0.2-7%, P = 0.03), respectively, at 2 h following exposure compared with filtered air. CONCLUSION Inhalation of diesel exhaust increases ex vivo thrombus formation and causes in vivo platelet activation in man. These findings provide a potential mechanism linking exposure to combustion-derived air pollution with the triggering of acute MI.


European Respiratory Journal | 2006

Airway antioxidant and inflammatory responses to diesel exhaust exposure in healthy humans.

Annelie F. Behndig; Ian Mudway; Joanna L Brown; Nikolai Stenfors; Ragnberth Helleday; Sean T Duggan; Susan J. Wilson; Christoffer Boman; Flemming R. Cassee; Anthony J. Frew; Frank J. Kelly; Thomas Sandström; Anders Blomberg

Pulmonary cells exposed to diesel exhaust (DE) particles in vitro respond in a hierarchical fashion with protective antioxidant responses predominating at low doses and inflammation and injury only occurring at higher concentrations. In the present study, the authors examined whether similar responses occurred in vivo, specifically whether antioxidants were upregulated following a low-dose DE challenge and investigated how these responses related to the development of airway inflammation at different levels of the respiratory tract where particle dose varies markedly. A total of 15 volunteers were exposed to DE (100 µg·m−3 airborne particulate matter with a diameter of <10 µm for 2 h) and air in a double-blinded, randomised fashion. At 18 h post-exposure, bronchoscopy was performed with lavage and mucosal biopsies taken to assess airway redox and inflammatory status. Following DE exposure, the current authors observed an increase in bronchial mucosa neutrophil and mast cell numbers, as well as increased neutrophil numbers, interleukin-8 and myeloperoxidase concentrations in bronchial lavage. No inflammatory responses were seen in the alveolar compartment, but both reduced glutathione and urate concentrations were increased following diesel exposure. In conclusion, the lung inflammatory response to diesel exhaust is compartmentalised, related to differing antioxidant responses in the conducting airway and alveolar regions.


European Respiratory Journal | 2001

Diesel exhaust enhances airway responsiveness in asthmatic subjects.

C Nordenhall; Jamshid Pourazar; M C Ledin; Jan-Olof Levin; Thomas Sandström; Ellinor Ädelroth

Particulate matter (PM) pollution has been associated with negative health effects, including exacerbations of asthma following exposure to PM peaks. The aim of the present study was to investigate the effects of short-term exposure to diesel exhaust (DE) in asthmatics, by specifically addressing the effects on airway hyperresponsiveness, lung function and airway inflammation. Fourteen nonsmoking, atopic asthmatics with stable disease, on continuous treatment with inhaled corticosteroids, were included. All were hyperresponsive to methacholine. Each subject was exposed to DE (particles with a 50% cut-off aerodynamic diameter of 10 microm (PM10) 300 microg x m(-3)) and air during 1 h on two separate occasions. Lung function was measured before and immediately after the exposures. Sputum induction was performed 6 h, and methacholine inhalation test 24 h, after each exposure. Exposure to DE was associated with a significant increase in the degree of hyperresponsiveness, as compared to after air, of 0.97 doubling concentrations at 24 h after exposure (p < 0.001). DE also induced a significant increase in airway resistance (p=0.004) and in sputum levels of interleukin (IL)-6 (p=0.048). No changes were detected in sputum levels of methyl-histamine, eosinophil cationic protein, myeloperoxidase and IL-8. This study indicated that short-term exposure to diesel exhaust, equal to high ambient levels of particulate matter, is associated with adverse effects in asthmatic airways, even in the presence of inhaled corticosteroid therapy. The increase in airway responsiveness may provide an important link to epidemiological findings of exacerbations of asthma following exposure to particulate matter.


Occupational and Environmental Medicine | 1999

Bronchoalveolar inflammation after exposure to diesel exhaust: comparison between unfiltered and particle trap filtered exhaust.

B Rudell; Anders Blomberg; Ragnberth Helleday; M C Ledin; Bo Lundbäck; N. Stjernberg; P. Horstedt; Thomas Sandström

OBJECTIVES: Air pollution particulates have been identified as having adverse effects on respiratory health. The present study was undertaken to further clarify the effects of diesel exhaust on bronchoalveolar cells and soluble components in normal healthy subjects. The study was also designed to evaluate whether a ceramic particle trap at the end of the tail pipe, from an idling engine, would reduce indices of airway inflammation. METHODS: The study comprised three exposures in all 10 healthy never smoking subjects; air, diluted diesel exhaust, and diluted diesel exhaust filtered with a ceramic particle trap. The exposures were given for 1 hour in randomised order about 3 weeks apart. The diesel exhaust exposure apperatus has previously been carefully developed and evaluated. Bronchoalveolar lavage was performed 24 hours after exposures and the lavage fluids from the bronchial and bronchoalveolar region were analysed for cells and soluble components. RESULTS: The particle trap reduced the mean steady state number of particles by 50%, but the concentrations of the other measured compounds were almost unchanged. It was found that diesel exhaust caused an increase in neutrophils in airway lavage, together with an adverse influence on the phagocytosis by alveolar macrophages in vitro. Furthermore, the diesel exhaust was found to be able to induce a migration of alveolar macrophages into the airspaces, together with reduction in CD3+CD25+ cells. (CD = cluster of differentiation) The use of the specific ceramic particle trap at the end of the tail pipe was not sufficient to completely abolish these effects when interacting with the exhaust from an idling vehicle. CONCLUSIONS: The current study showed that exposure to diesel exhaust may induce neutrophil and alveolar macrophage recruitment into the airways and suppress alveolar macrophage function. The particle trap did not cause significant reduction of effects induced by diesel exhaust compared with unfiltered diesel exhaust. Further studies are warranted to evaluate more efficient treatment devices to reduce adverse reactions to diesel exhaust in the airways.

Collaboration


Dive into the Thomas Sandström's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anthony J. Frew

Royal Sussex County Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge