Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thomas Schweder is active.

Publication


Featured researches published by Thomas Schweder.


Science | 2012

Substrate-controlled succession of marine bacterioplankton populations induced by a phytoplankton bloom.

Hanno Teeling; Bernhard M. Fuchs; Dörte Becher; Christine Klockow; Antje Gardebrecht; Christin M. Bennke; Mariette Kassabgy; Sixing Huang; Alexander J. Mann; Jost Waldmann; Marc Weber; Anna Klindworth; Andreas Otto; Jana Lange; Jörg Bernhardt; Christine Reinsch; Michael Hecker; Jörg Peplies; Frank D. Bockelmann; Ulrich Callies; Gunnar Gerdts; Antje Wichels; Karen Helen Wiltshire; Frank Oliver Glöckner; Thomas Schweder; Rudolf Amann

Blooming Succession Algal blooms in the ocean will trigger a succession of microbial predators and scavengers. Teeling et al. (p. 608) used a combination of microscopy, metagenomics, and metaproteomics to analyze samples from a North Sea diatom bloom over time. Distinct steps of polysaccharide degradation and carbohydrate uptake could be assigned to clades of Flavobacteria and Gammaproteobacteria, which differ profoundly in their transporter profiles and their uptake systems for phosphorus. The phytoplankton/bacterioplankton coupling in coastal marine systems is of crucial importance for global carbon cycling. Bacterioplankton clade succession following phytoplankton blooms may be predictable enough that it can be included in models of global carbon cycling. Seasonal diatom growth in the North Sea results in a temporal succession of metabolically specialized bacteria. Phytoplankton blooms characterize temperate ocean margin zones in spring. We investigated the bacterioplankton response to a diatom bloom in the North Sea and observed a dynamic succession of populations at genus-level resolution. Taxonomically distinct expressions of carbohydrate-active enzymes (transporters; in particular, TonB-dependent transporters) and phosphate acquisition strategies were found, indicating that distinct populations of Bacteroidetes, Gammaproteobacteria, and Alphaproteobacteria are specialized for successive decomposition of algal-derived organic matter. Our results suggest that algal substrate availability provided a series of ecological niches in which specialized populations could bloom. This reveals how planktonic species, despite their seemingly homogeneous habitat, can evade extinction by direct competition.


Journal of Biotechnology | 2001

Physiological responses to mixing in large scale bioreactors

Sven-Olof Enfors; Mehmedalija Jahic; A. Rozkov; Bo Xu; Michael Hecker; Britta Jürgen; Elke Krüger; Thomas Schweder; G. Hamer; D. O'Beirne; N. Noisommit-Rizzi; Matthias Reuss; L. Boone; Christopher J. Hewitt; Caroline M. McFarlane; Alvin W. Nienow; T. Kovacs; Christian Trägårdh; Laszlo Fuchs; Johan Revstedt; P. C. Friberg; Bjørn Helge Hjertager; G. Blomsten; H. Skogman; S. Hjort; Frans W. J. M. M. Hoeks; H. Y. Lin; Peter Neubauer; R.G.J.M. van der Lans; Karel Ch. A. M. Luyben

Escherichia coli fed-batch cultivations at 22 m3 scale were compared to corresponding laboratory scale processes and cultivations using a scale-down reactor furnished with a high-glucose concentration zone to mimic the conditions in a feed zone of the large bioreactor. Formate accumulated in the large reactor, indicating the existence of oxygen limitation zones. It is suggested that the reduced biomass yield at large scale partly is due to repeated production/re-assimilation of acetate from overflow metabolism and mixed acid fermentation products due to local moving zones with oxygen limitation. The conditions that generated mixed-acid fermentation in the scale-down reactor also induced a number of stress responses, monitored by analysis of mRNA of selected stress induced genes. The stress responses were relaxed when the cells returned to the substrate limited and oxygen sufficient compartment of the reactor. Corresponding analysis in the large reactor showed that the concentration of mRNA of four stress induced genes was lowest at the sampling port most distant from the feed zone. It is assumed that repeated induction/relaxation of stress responses in a large bioreactor may contribute to altered physiological properties of the cells grown in large-scale bioreactor. Flow cytometric analysis revealed reduced damage with respect to cytoplasmic membrane potential and integrity in cells grown in the dynamic environments of the large scale reactor and the scale-down reactor.


Biotechnology and Bioengineering | 1999

Monitoring of genes that respond to process-related stress in large-scale bioprocesses.

Thomas Schweder; Elke Krüger; Bo Xu; Britta Jürgen; Gustav Blomsten; Sven-Olof Enfors; Michael Hecker

In large-scale aerobic fed-batch processes, cells are exposed to local zones of high glucose concentrations that can also cause local oxygen limitations at high cell densities. The mRNA levels of four stress genes (clpB, dnaK, uspA, and proU) and three genes responding to oxygen limitation or glucose excess (pfl, frd, and ackA) were investigated in an industrial 20-m(3) Escherichia coli process and in a scale-down reactor with defined high-glucose and low-oxygen zones. The mRNA levels of ackA and proU were high during the batch growth phase, but declined drastically when glucose became limited, whereas the mRNA levels of the other stress genes were relatively constant throughout the process. In the industrial-scale reactor, the stress gene mRNA levels were, in most cases, highest in the middle part and at the top of the reactor, where the substrate was fed. Cells passing through the high glucose zone of the scale-down reactor had elevated mRNA levels for the oxygen limitation genes and had also elevated heat-shock gene mRNA levels. Both responses to stress occurred within seconds. The approach presented in this study offers a tool for monitoring process-related changes in the transcriptional regulation of genes.


Biotechnology and Bioengineering | 2000

Monitoring of genes that respond to overproduction of an insoluble recombinant protein in Escherichia coli glucose-limited fed-batch fermentations.

Britta Jürgen; Hong Ying Lin; Stefan Riemschneider; Christian Scharf; Peter Neubauer; Roland Schmid; Michael Hecker; Thomas Schweder

The cellular response of Escherichia coli to overproduction of the insoluble heterologous protein alpha-glucosidase of Saccharomyces cerevisiae during a glucose-limited fed-batch fermentation was analyzed on the transcriptional and the translational levels. After the induction of the tac-regulated overexpression of the recombinant model protein, a significant but transient increase of the mRNA levels of the heat shock genes lon and dnaK could be observed. The mRNA level of the gene coding for the inclusion body-associated protein IbpB showed the strongest increase and remained at a clearly higher level until the end of the fermentation. By contrast, the mRNA levels of htrA and ppiB were decreased after induction of the alpha-glucosidase overexpression. Analysis of the soluble cytoplasmic protein fraction 3 h after induction revealed increased levels of the chaperones GroEL, DnaK, and Tig and a decrease in the protein levels of the two ribosomal proteins S6 and L9, the peptidylprolyl-cis-trans-isomerase PpiB, and the sigma(38)-dependent protein Dps. Analysis of the aggregated protein fraction revealed a remarkably inhomogeneous composition of the alpha-glucosidase inclusion bodies. N-terminal sequencing and MALDI-TOF mass spectrometry identification showed that most of these spots are fragments of the heterologous alpha-glucosidase. Host stress proteins, like DnaK, GroEL, IbpA, IbpB, and OmpT, have been found to be associated with the alpha-glucosidase protein aggregates.


PLOS ONE | 2011

Functional analysis of the magnetosome island in Magnetospirillum gryphiswaldense: the mamAB operon is sufficient for magnetite biomineralization.

Anna Lohße; Susanne Ullrich; Emanuel Katzmann; Sarah Borg; Gerd Wanner; Michael Richter; Birgit Voigt; Thomas Schweder; Dirk Schüler

Bacterial magnetosomes are membrane-enveloped, nanometer-sized crystals of magnetite, which serve for magnetotactic navigation. All genes implicated in the synthesis of these organelles are located in a conserved genomic magnetosome island (MAI). We performed a comprehensive bioinformatic, proteomic and genetic analysis of the MAI in Magnetospirillum gryphiswaldense. By the construction of large deletion mutants we demonstrate that the entire region is dispensable for growth, and the majority of MAI genes have no detectable function in magnetosome formation and could be eliminated without any effect. Only <25% of the region comprising four major operons could be associated with magnetite biomineralization, which correlated with high expression of these genes and their conservation among magnetotactic bacteria. Whereas only deletion of the mamAB operon resulted in the complete loss of magnetic particles, deletion of the conserved mms6, mamGFDC, and mamXY operons led to severe defects in morphology, size and organization of magnetite crystals. However, strains in which these operons were eliminated together retained the ability to synthesize small irregular crystallites, and weakly aligned in magnetic fields. This demonstrates that whereas the mamGFDC, mms6 and mamXY operons have crucial and partially overlapping functions for the formation of functional magnetosomes, the mamAB operon is the only region of the MAI, which is necessary and sufficient for magnetite biomineralization. Our data further reduce the known minimal gene set required for magnetosome formation and will be useful for future genome engineering approaches.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Metaproteomics of a gutless marine worm and its symbiotic microbial community reveal unusual pathways for carbon and energy use

Manuel Kleiner; Cecilia Wentrup; Christian Lott; Hanno Teeling; Silke Wetzel; Jacque C. Young; Yun-Juan Chang; Manesh B Shah; Nathan C. VerBerkmoes; Jan Zarzycki; Georg Fuchs; Stephanie Markert; Kristina Hempel; Birgit Voigt; Doerte Becher; Manuel Liebeke; Michael Lalk; Dirk Albrecht; Michael Hecker; Thomas Schweder; Nicole Dubilier

Low nutrient and energy availability has led to the evolution of numerous strategies for overcoming these limitations, of which symbiotic associations represent a key mechanism. Particularly striking are the associations between chemosynthetic bacteria and marine animals that thrive in nutrient-poor environments such as the deep sea because the symbionts allow their hosts to grow on inorganic energy and carbon sources such as sulfide and CO2. Remarkably little is known about the physiological strategies that enable chemosynthetic symbioses to colonize oligotrophic environments. In this study, we used metaproteomics and metabolomics to investigate the intricate network of metabolic interactions in the chemosynthetic association between Olavius algarvensis, a gutless marine worm, and its bacterial symbionts. We propose previously undescribed pathways for coping with energy and nutrient limitation, some of which may be widespread in both free-living and symbiotic bacteria. These pathways include (i) a pathway for symbiont assimilation of the host waste products acetate, propionate, succinate and malate; (ii) the potential use of carbon monoxide as an energy source, a substrate previously not known to play a role in marine invertebrate symbioses; (iii) the potential use of hydrogen as an energy source; (iv) the strong expression of high-affinity uptake transporters; and (v) as yet undescribed energy-efficient steps in CO2 fixation and sulfate reduction. The high expression of proteins involved in pathways for energy and carbon uptake and conservation in the O. algarvensis symbiosis indicates that the oligotrophic nature of its environment exerted a strong selective pressure in shaping these associations.


Biosensors and Bioelectronics | 2004

Electric chips for rapid detection and quantification of nucleic acids

Magdalena Gabig-Cimińska; Anders Holmgren; H Andresen; K Bundvig Barken; Mogens Wümpelmann; Jörg Albers; Rainer Hintsche; Antje Breitenstein; Peter Neubauer; Marcin Los; Agata Czyż; Grzegorz Węgrzyn; G Silfversparre; Britta Jürgen; Thomas Schweder; Sven-Olof Enfors

A silicon chip-based electric detector coupled to bead-based sandwich hybridization (BBSH) is presented as an approach to perform rapid analysis of specific nucleic acids. A microfluidic platform incorporating paramagnetic beads with immobilized capture probes is used for the bio-recognition steps. The protocol involves simultaneous sandwich hybridization of a single-stranded nucleic acid target with the capture probe on the beads and with a detection probe in the reaction solution, followed by enzyme labeling of the detection probe, enzymatic reaction, and finally, potentiometric measurement of the enzyme product at the chip surface. Anti-DIG-alkaline phosphatase conjugate was used for the enzyme labeling of the DIG-labeled detection probe. p-Aminophenol phosphate (pAPP) was used as a substrate. The enzyme reaction product, p-aminophenol (pAP), is oxidized at the anode of the chip to quinoneimine that is reduced back to pAP at the cathode. The cycling oxidation and reduction of these compounds result in a current producing a characteristic signal that can be related to the concentration of the analyte. The performance of the different steps in the assay was characterized using in vitro synthesized RNA oligonucleotides and then the instrument was used for analysis of 16S rRNA in Escherichia coli extract. The assay time depends on the sensitivity required. Artificial RNA target and 16S rRNA, in amounts ranging from 10(11) to 10(10) molecules, were assayed within 25 min and 4 h, respectively.


Microbiology | 2002

Genome-wide transcriptional profiling of the Bacillus subtilis cold-shock response.

Tanja Kaan; Georg Homuth; Ulrike Mäder; Julia Bandow; Thomas Schweder

The transcriptome of Bacillus subtilis was analysed at different time points (30, 60 and 90 min) after a temperature downshift from 37 to 18 degrees C using DNA macroarrays. This approach allowed the identification of around 50 genes exhibiting an increased mRNA level and around 50 genes exhibiting a decreased mRNA level under cold-shock conditions. Many of the repressed genes encode enzymes involved in the biosynthesis of amino acids, nucleotides and coenzymes, indicating metabolic adaptation of the cells to the decreased growth rate at the lower temperature. The strongest cold-inducible gene encodes fatty acid desaturase, which forms unsaturated fatty acids from saturated phospholipid precursors, thereby increasing membrane fluidity. The cold-shock-induced increase of mRNA levels of the classical cold-shock genes cspB, cspC and cspD could be verified. Furthermore, besides many genes encoding proteins of unknown function, some genes encoding ribosomal proteins were transcriptionally up-regulated, which points to an adaptive reprogramming of the ribosomes under cold-shock conditions. Interestingly, the amount of mRNA specified by the operon ptb-bcd-buk-lpd-bkdA1-bkdA2-bkdB, which encodes enzymes involved in degradation of branched-chain amino acids, also increases after a temperature downshift. As cells utilize the isoleucine and valine degradation intermediates alpha-methylbutyryl-CoA and isobutyryl-CoA for synthesis of branched-chain fatty acids, this finding reflects the adaptation of membrane lipid composition, ensuring the maintenance of appropriate membrane fluidity at low temperatures. The results of the DNA array analyses were verified for several selected genes by RNA slot-blot analysis and compared with two-dimensional PAGE analyses.


The ISME Journal | 2014

Functional characterization of polysaccharide utilization loci in the marine Bacteroidetes 'Gramella forsetii' KT0803

Antje Kabisch; Andreas Otto; Sten König; Dörte Becher; Dirk Albrecht; Margarete Schüler; Hanno Teeling; Rudolf Amann; Thomas Schweder

Members of the phylum Bacteroidetes are abundant in many marine ecosystems and are known to have a pivotal role in the mineralization of complex organic substrates such as polysaccharides and proteins. We studied the decomposition of the algal glycans laminarin and alginate by ‘Gramella forsetii’ KT0803, a bacteroidetal isolate from North Sea surface waters. A combined application of isotope labeling, subcellular protein fractionation and quantitative proteomics revealed two large polysaccharide utilization loci (PULs) that were specifically induced, one by alginate and the other by laminarin. These regulons comprised genes of surface-exposed proteins such as oligomer transporters, substrate-binding proteins, carbohydrate-active enzymes and hypothetical proteins. Besides, several glycan-specific TonB-dependent receptors and SusD-like substrate-binding proteins were expressed also in the absence of polysaccharide substrates, suggesting an anticipatory sensing function. Genes for the utilization of the beta-1,3-glucan laminarin were found to be co-regulated with genes for glucose and alpha-1,4-glucan utilization, which was not the case for the non-glucan alginate. Strong syntenies of the PULs of ‘G. forsetii’ with similar loci in other Bacteroidetes indicate that the specific response mechanisms of ‘G. forsetii’ to changes in polysaccharide availability likely apply to other Bacteroidetes. Our results can thus contribute to an improved understanding of the ecological niches of marine Bacteroidetes and their roles in the polysaccharide decomposition part of carbon cycling in marine ecosystems.


PLOS Pathogens | 2012

The genome of the obligate intracellular parasite Trachipleistophora hominis: new insights into microsporidian genome dynamics and reductive evolution.

Eva Heinz; Tom A. Williams; Sirintra Nakjang; Christophe Noël; Daniel C. Swan; Alina V. Goldberg; Simon R. Harris; Thomas Weinmaier; Stephanie Markert; Doerte Becher; Joerg Bernhardt; Tal Dagan; Christian Hacker; John M. Lucocq; Thomas Schweder; Thomas Rattei; Neil Hall; Robert P. Hirt; T. Martin Embley

The dynamics of reductive genome evolution for eukaryotes living inside other eukaryotic cells are poorly understood compared to well-studied model systems involving obligate intracellular bacteria. Here we present 8.5 Mb of sequence from the genome of the microsporidian Trachipleistophora hominis, isolated from an HIV/AIDS patient, which is an outgroup to the smaller compacted-genome species that primarily inform ideas of evolutionary mode for these enormously successful obligate intracellular parasites. Our data provide detailed information on the gene content, genome architecture and intergenic regions of a larger microsporidian genome, while comparative analyses allowed us to infer genomic features and metabolism of the common ancestor of the species investigated. Gene length reduction and massive loss of metabolic capacity in the common ancestor was accompanied by the evolution of novel microsporidian-specific protein families, whose conservation among microsporidians, against a background of reductive evolution, suggests they may have important functions in their parasitic lifestyle. The ancestor had already lost many metabolic pathways but retained glycolysis and the pentose phosphate pathway to provide cytosolic ATP and reduced coenzymes, and it had a minimal mitochondrion (mitosome) making Fe-S clusters but not ATP. It possessed bacterial-like nucleotide transport proteins as a key innovation for stealing host-generated ATP, the machinery for RNAi, key elements of the early secretory pathway, canonical eukaryotic as well as microsporidian-specific regulatory elements, a diversity of repetitive and transposable elements, and relatively low average gene density. Microsporidian genome evolution thus appears to have proceeded in at least two major steps: an ancestral remodelling of the proteome upon transition to intracellular parasitism that involved reduction but also selective expansion, followed by a secondary compaction of genome architecture in some, but not all, lineages.

Collaboration


Dive into the Thomas Schweder's collaboration.

Top Co-Authors

Avatar

Michael Hecker

University of Greifswald

View shared research outputs
Top Co-Authors

Avatar

Britta Jürgen

University of Greifswald

View shared research outputs
Top Co-Authors

Avatar

Birgit Voigt

University of Greifswald

View shared research outputs
Top Co-Authors

Avatar

Dirk Albrecht

University of Greifswald

View shared research outputs
Top Co-Authors

Avatar

Dörte Becher

University of Greifswald

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael Hecker

University of Greifswald

View shared research outputs
Top Co-Authors

Avatar

Johannes Kabisch

Technische Universität Darmstadt

View shared research outputs
Researchain Logo
Decentralizing Knowledge