Thomas Scior
Benemérita Universidad Autónoma de Puebla
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Thomas Scior.
Journal of Chemical Information and Modeling | 2012
Thomas Scior; Andreas Bender; Gary Tresadern; José L. Medina-Franco; Karina Martínez-Mayorga; Thierry Langer; Karina Cuanalo-Contreras; Dimitris K. Agrafiotis
The aim of virtual screening (VS) is to identify bioactive compounds through computational means, by employing knowledge about the protein target (structure-based VS) or known bioactive ligands (ligand-based VS). In VS, a large number of molecules are ranked according to their likelihood to be bioactive compounds, with the aim to enrich the top fraction of the resulting list (which can be tested in bioassays afterward). At its core, VS attempts to improve the odds of identifying bioactive molecules by maximizing the true positive rate, that is, by ranking the truly active molecules as high as possible (and, correspondingly, the truly inactive ones as low as possible). In choosing the right approach, the researcher is faced with many questions: where does the optimal balance between efficiency and accuracy lie when evaluating a particular algorithm; do some methods perform better than others and in what particular situations; and what do retrospective results tell us about the prospective utility of a particular method? Given the multitude of settings, parameters, and data sets the practitioner can choose from, there are many pitfalls that lurk along the way which might render VS less efficient or downright useless. This review attempts to catalogue published and unpublished problems, shortcomings, failures, and technical traps of VS methods with the aim to avoid pitfalls by making the user aware of them in the first place.
Mini-reviews in Medicinal Chemistry | 2005
Thomas Scior; Antonio Guevara-Garcia; Philippe Bernard; Quoc-Tuan Do; David M. Domeyer; Stefan Laufer
Vanadate can be bioequivalent to phosphate and replace it in cellular metabolism. The detection of insulin-like activity has spurred interest in the development of oral anti-diabetic drugs containing vanadium. We collected and evaluated a vast toxicity data set and discussed molecular aspects related to insulin-mimetic effects of vanadium complexes.
Mini-reviews in Medicinal Chemistry | 2007
Thomas Scior; Philippe Bernard; José L. Medina-Franco; Gerald M. Maggiora
Large libraries of chemical compounds reflect the exponentially growing data-enrichment in drug discovery that trends towards fully automated informatics solutions to study structure - activity relationships by screening docked ligand candidates to biological target structures. We review otherwise disseminated user descriptions of mainly public databases with free access and also our integrated data mining tool GPDBnet for phyto-pharmacology.
Drug Design Development and Therapy | 2008
Thomas Scior; Hans-Georg Mack; José Antonio Guevara García; Wolfhard Koch
The postulated transition of Bis-Maltolato-OxoVanadium(IV) (BMOV) from its inactive trans- into its cis-aquo-BMOV isomeric form in solution was simulated by means of computational molecular modeling. The rotational barrier was calculated with DFT – B3LYP under a stepwise optimization protocol with STO-3G, 3-21G, 3-21G*, and 6-31G ab initio basis sets. Our computed results are consistent with reports on the putative molecular mechanism of BMOV triggering the insulin-like cellular response (insulin mimetic) as a potent inhibitor of the protein tyrosine phosphatase-1B (PTP-1B). Initially, trans-BMOV is present in its solid dosage form but in aqueous solution, and during oral administration, it is readily converted into a mixture of “open-type” and “closed-type” complexes of cis-aquo-BMOV under equilibrium conditions. However, in the same measure as the “closed-type” complex binds to the cytosolic PTP-1B, it disappears from solution, and the equilibrium shifts towards the “closed-type” species. In full accordance, the computed binding mode of cis-BMOV is energetically favored over sterically hindered trans-BMOV. In view of our earlier report on prodrug hypothesis of vanadium organic compounds the present results suggest that cis-BMOV is the bioactive species.
Computational and structural biotechnology journal | 2013
Thomas Scior; Christian Alexander; Ulrich Zaehringer
There is literature evidence gathered throughout the last two decades reflecting unexpected species differences concerning the immune response to lipid IVa which provides the opportunity to gain more detailed insight by the molecular modeling approach described in this study. Lipid IVa is a tetra-acylated precursor of lipid A in the biosynthesis of lipopolysaccharide (LPS) in Gram-negative bacteria. Lipid A of the prototypic E. coli-type is a hexa-acylated structure that acts as an agonist in all tested mammalian species by innate immunorecognition via the Toll-like receptor 4 (TLR4)/myeloid differentiation factor 2 (MD-2) receptor complex. In contrast, lipid IVa is proinflammatory in mouse cells (agonism) but it remains inactive to human macrophages and even antagonizes the action of potent agonists like E. coli-type lipid A. This particular ambivalent activity profile of lipid IVa has been confirmed in other mammalian species: in equine cells Lipid IVa also acts in a weak agonistic manner, whereas being inactive and antagonizing the lipid A-induced activation of canine TLR4/MD-2. Intriguingly, the respective TLR4 amino acid sequences of the latter species are more identical to the human (67%, 68%) than to the murine (62%, 58%) ortholog. In order to address the unpaired activity-sequence dualism for human, murine, canine and equine species regarding the activity of lipid IVa as compared to LPS and lipid A and, we review the literature and computationally pinpoint the differential biological effects of lipid IVa versus LPS and lipid A to specific amino acid residues. In contrast to lipid IVa the structurally related synthetic compound Eritoran (E5564) acts consistently in an antagonistic manner in these mammalian species and serves as a reference ligand for molecular modeling in this study. The combined evaluation of data sets provided by prior studies and in silico homology mapping of differential residues of TLR4/MD-2 complexes lends detailed insight into the driving forces of the characteristic binding modes of the lipid A domain in LPS and the precursor structure lipid IVa to the receptor complex in individual mammalian species.
Current Medicinal Chemistry | 2016
Thomas Scior; José Antonio Guevara-García; Quoc-Tuan Do; Philippe Bernard; Stefan Laufer
Public academic research sites, private institutions as well as small companies have made substantial contributions to the ongoing development of antidiabetic vanadium compounds. But why is this endeavor not echoed by the globally operating pharmaceutical companies, also known as “Big Pharma”? Intriguingly, today’s clinical practice is in great need to improve or replace insulin treatment against Diabetes Mellitus (DM). Insulin is the mainstay therapeutically and economically. So, why do those companies develop potential antidiabetic drug candidates without vanadium (vanadium-free)? We gathered information about physicochemical and pharmacological properties of known vanadium-containing antidiabetic compounds from the specialized literature, and converted the data into explanations (arguments, the “pros and cons”) about the underpinnings of antidiabetic vanadium. Some discoveries were embedded in chronological order while seminal reviews of the last decade about the Medicinal chemistry of vanadium and its history were also listed for further understanding. In particular, the concepts of so-called “noncomplexed or free” vanadium species (i.e. inorganic oxido-coordinated species) and “biogenic speciation” of antidiabetic vanadium complexes were found critical and subsequently documented in more details to answer the question.
Drug Design Development and Therapy | 2010
Thomas Scior; José Antonio Guevara-García; Francisco J. Melendez; Hassan H. Abdallah; Quoc-Tuan Do; Philippe Bernard
Prior to its total synthesis, a new vanadium coordination compound, called TSAG0101, was computationally designed to inhibit the enzyme protein tyrosine phosphatase 1B (PTP1B). The PTP1B acts as a negative regulator of insulin signaling by blocking the active site where phosphate hydrolysis of the insulin receptor takes place. TSAG001, [VVO2(OH)(picolinamide)], was characterized by infrared (IR) and nuclear magnetic resonance (NMR) spectroscopy; IR: ν/cm−1 3,570 (NH), 1,627 (C=O, coordinated), 1,417 (C–N), 970/842 (O=V=O), 727 δ̣ (pyridine ring); 13C NMR: 5 bands between 122 and 151 ppm and carbonyl C shifted to 180 ppm; and 1H NMR: 4 broad bands from 7.6 to 8.2 ppm and NH2 shifted to 8.8 ppm. In aqueous solution, in presence or absence of sodium citrate as a biologically relevant and ubiquitous chelator, TSAG0101 undergoes neither ligand exchange nor reduction of its central vanadium atom during 24 hours. TSAG0101 shows blood glucose lowering effects in rats but it produced no alteration of basal- or glucose-induced insulin secretion on β cells during in vitro tests, all of which excludes a direct mechanism evidencing the extrapancreatic nature of its activity. The lethal dose (LD50) of TSAG0101 was determined in Wistar mice yielding a value of 412 mg/kg. This value is one of the highest among vanadium compounds and classifies it as a mild toxicity agent when compared with literature data. Due to its nonsubstituted, small-sized scaffold design, its remarkable complex stability, and low toxicity; TSAG0101 should be considered as an innovative insulin-mimetic principle with promising properties and, therefore, could become a new lead compound for potential nonpeptide PTP1B inhibitors in antidiabetic drug research. In view of the present work, the inhibitory concentration (IC50) and extended solution stability will be tested.
Computational and structural biotechnology journal | 2013
Thomas Scior; Jorge Lozano-Aponte; Vianihuini Figueroa-Vazquez; Julian A. Yunes-Rojas; Ulrich Zähringer; Christian Alexander
A literature review concerning the unexpected species differences of the vertebrate innate immune response to lipid IVA was published in CSBJ prior to the present computational study to address the unpaired activity-sequence correlation of prototypic E. coli -type lipid A and its precursor lipid IVA regarding human, murine, equine and canine species. To this end, their sequences and structures of hitherto known Toll-like receptor 4 (TLR4) and myeloid differentiation factor 2 (MD-2) complexes were aligned and their differential side chain patterns studied. If required due to the lack of the corresponding X-ray crystallographic data, three-dimensional models of TLR4/MD-2/ligand complexes were generated using mono and dimeric crystal structures as templates and in silico docking of the prototypic ligands lipid A, lipid IVA and Eritoran. All differential amino acids were mapped to pinpoint species dependency on an atomic scale, i.e. the possible concert of mechanistically relevant side chains. In its most abstract and general form the three-dimensional (3D-) models devise a triangular interface or “wedge” where molecular interactions between TLR4, MD-2 and ligand itself take place. This study identifies two areas in the wedge related to either agonism or antagonism reflecting why ligands like lipid IVA can possess a species dependent dual activity. Lipid IVA represents an imperfect (underacylated and backbone-flipped), low affinity ligand of mammalian TLR4/MD-2 complexes. Its specific but weak antagonistic activity in the human system is in particular due to the loss of phosphate attraction in the wedge-shaped region conferred by nonhomologous residue changes when compared to crystal and modeled structures of the corresponding murine and equine TLR4/MD-2 complexes. The counter-TLR4/MD-2 unit was also taken into account since agonist-mediated dimerization in a defined m-shaped complex composed of two TLR4/MD-2/agonist subunits triggers intracellular signaling during the innate immune response to bacterial endotoxin exposure.
Journal of Molecular Modeling | 2011
Austin B. Yongye; Clemencia Pinilla; José L. Medina-Franco; Marc A. Giulianotti; Colette T. Dooley; Jon R. Appel; Adel Nefzi; Thomas Scior; Richard A. Houghten; Karina Martínez-Mayorga
AbstractMixture-based synthetic combinatorial library (MB-SCL) screening is a well-established experimental approach for rapidly retrieving structure–activity relationships (SAR) and identifying hits. Virtual screening is also a powerful approach that is increasingly being used in drug discovery programs and has a growing number of successful applications. However, limited efforts have been made to integrate both techniques. To this end, we combined experimental data from a MB-SCL of bicyclic guanidines screened against the κ-opioid receptor and molecular similarity methods. The activity data and similarity analyses were integrated in a biometric analysis–similarity map. Such a map allows the molecules to be categorized as actives, activity cliffs, low similarity to the reference compounds, or missed hits. A compound with IC50 = 309 nM was found in the “missed hits” region, showing that active compounds can be retrieved from a MS-SCL via computational approaches. The strategy presented in this work is general and is envisioned as a general-purpose approach that can be applied to other MB-SCLs. Mixture-based screening activity data and molecular similarity comparisons to known active compounds are integrated via a biometrical analysis-similarity map, to determine the extent to which molecular similarity methods can rescue missed hits from a mixture-based screening synthetic combinatorial library.
Journal of Chemical Information and Modeling | 2014
Thomas Scior; Moritz Verhoff; Itzel Gutierrez-Aztatzi; Hermann P. T. Ammon; Stefan Laufer; Oliver Werz
Boswellic acids (BAs) possess anti-inflammatory properties in various biological models with similar features to those of glucocorticoids (GCs), such as suppression of the release of pro-inflammatory cytokines. Hence, the molecular mechanism of BAs responsible for their anti-inflammatory features might be attributable to interference with the human glucocorticoid receptor (GR). Due to obvious structural similarities with GCs, we conducted pharmacophore studies as well as molecular docking simulations of BAs as putative ligands at the ligand binding site (LBS) of the GR in distinct functional states. In order to verify receptor binding and functional activation of the GR by BAs, radiometric binding assays as well as GR response element-dependent luciferase reporter assay were performed with dexamethasone (DEX) as a functional positive control. With respect to the observed position of GCs in GR crystal complexes in the active antagonist state, BAs docked in a flipped orientation with estimated binding constants reflecting nanomolar affinities. For validation, DEX and other steroids were successfully redocked into their crystal poses in similar ranges as reported in the literature. In line with the pharmacophore and docking models, the BAs were strong GR binders (radiometric binding assay), albeit none of the BAs activated the GR in the reporter gene assay, when compared to the GC agonist DEX. The flipped scaffolds of all BAs dislodge the known C-11 function from its receiving amino acid (Asn564), which may explain the silencing effects of receptor-bound BAs in the reporter gene assay. Together, our results constitute a compelling example of rigid keys acting in an adaptable lock qualifying as a reversed induced fit mechanism, thereby extending the hitherto published knowledge about molecular target interactions of BAs.