Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thomas Seyller is active.

Publication


Featured researches published by Thomas Seyller.


Nature Materials | 2009

Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide

Konstantin V. Emtsev; Karsten Horn; Johannes Jobst; Gary Lee Kellogg; L. Ley; Jessica L. McChesney; Taisuke Ohta; Sergey A. Reshanov; Jonas Röhrl; Eli Rotenberg; Andreas K. Schmid; Daniel Waldmann; Heiko B. Weber; Thomas Seyller

Graphene, a single monolayer of graphite, has recently attracted considerable interest owing to its novel magneto-transport properties, high carrier mobility and ballistic transport up to room temperature. It has the potential for technological applications as a successor of silicon in the post Moores law era, as a single-molecule gas sensor, in spintronics, in quantum computing or as a terahertz oscillator. For such applications, uniform ordered growth of graphene on an insulating substrate is necessary. The growth of graphene on insulating silicon carbide (SiC) surfaces by high-temperature annealing in vacuum was previously proposed to open a route for large-scale production of graphene-based devices. However, vacuum decomposition of SiC yields graphene layers with small grains (30-200 nm; refs 14-16). Here, we show that the ex situ graphitization of Si-terminated SiC(0001) in an argon atmosphere of about 1 bar produces monolayer graphene films with much larger domain sizes than previously attainable. Raman spectroscopy and Hall measurements confirm the improved quality of the films thus obtained. High electronic mobilities were found, which reach mu=2,000 cm (2) V(-1) s(-1) at T=27 K. The new growth process introduced here establishes a method for the synthesis of graphene films on a technologically viable basis.


Nanoscale | 2015

Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems

A. C. Ferrari; Francesco Bonaccorso; Vladimir I. Fal'ko; K. S. Novoselov; Stephan Roche; Peter Bøggild; Stefano Borini; Vincenzo Palermo; Nicola Pugno; Jose A. Garrido; Roman Sordan; Alberto Bianco; Laura Ballerini; Maurizio Prato; Elefterios Lidorikis; Jani Kivioja; Claudio Marinelli; Tapani Ryhänen; Alberto F. Morpurgo; Jonathan N. Coleman; Valeria Nicolosi; Luigi Colombo; M. García-Hernández; Adrian Bachtold; Grégory F. Schneider; F. Guinea; Cees Dekker; Matteo Barbone; Zhipei Sun; C. Galiotis

We present the science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems, targeting an evolution in technology, that might lead to impacts and benefits reaching into most areas of society. This roadmap was developed within the framework of the European Graphene Flagship and outlines the main targets and research areas as best understood at the start of this ambitious project. We provide an overview of the key aspects of graphene and related materials (GRMs), ranging from fundamental research challenges to a variety of applications in a large number of sectors, highlighting the steps necessary to take GRMs from a state of raw potential to a point where they might revolutionize multiple industries. We also define an extensive list of acronyms in an effort to standardize the nomenclature in this emerging field.


Nature Physics | 2011

Giant Faraday rotation in single- and multilayer graphene

Iris Crassee; Julien Levallois; Andrew L. Walter; Markus Ostler; Eli Rotenberg; Thomas Seyller; Dirk van der Marel; A. B. Kuzmenko

The rotation of polarized light in certain materials when subject to a magnetic field is known as the Faraday effect. Remarkably, just one atomic layer of graphene exhibits Faraday rotations that would only be measurable in other materials many hundreds of micrometres thick.


Science | 2010

Observation of Plasmarons in Quasi-Freestanding Doped Graphene

Florian Speck; Thomas Seyller; Karsten Horn; Marco Polini; Reza Asgari; A. H. MacDonald; Eli Rotenberg

More Crossings for Graphene Graphene, which consists of single sheets of graphite, has a number of distinctive electronic properties, including a conical structure that leads to a “Dirac point” where the valence and conduction band intersect at a zero-energy point. Bostwick et al. (p. 999) used angle-resolved photoemission spectroscopy to study graphene that was doped with alkali atoms and suspended from its substrate. They observed features associated with plasmarons, which arise from the interaction of the charge carriers with plasmons, the density oscillations of the electron gas. The Dirac crossing now becomes three crossings: one that involves charge bands, one involving plasmarons, and one involving the interaction between the two. Doping of graphene introduces two new crossing points of the conduction and valance-electron bands. A hallmark of graphene is its unusual conical band structure that leads to a zero-energy band gap at a single Dirac crossing point. By measuring the spectral function of charge carriers in quasi-freestanding graphene with angle-resolved photoemission spectroscopy, we showed that at finite doping, this well-known linear Dirac spectrum does not provide a full description of the charge-carrying excitations. We observed composite “plasmaron” particles, which are bound states of charge carriers with plasmons, the density oscillations of the graphene electron gas. The Dirac crossing point is resolved into three crossings: the first between pure charge bands, the second between pure plasmaron bands, and the third a ring-shaped crossing between charge and plasmaron bands.


Physical Review Letters | 2013

Direct view of hot carrier dynamics in graphene.

Jens Christian Johannsen; Søren Ulstrup; Federico Cilento; A. Crepaldi; M. Zacchigna; Cephise Cacho; I. C. Edmond Turcu; E. Springate; Felix Fromm; Christian Raidel; Thomas Seyller; F. Parmigiani; M. Grioni; Philip Hofmann

The ultrafast dynamics of excited carriers in graphene is closely linked to the Dirac spectrum and plays a central role for many electronic and optoelectronic applications. Harvesting energy from excited electron-hole pairs, for instance, is only possible if these pairs can be separated before they lose energy to vibrations, merely heating the lattice. Until now, the hot carrier dynamics in graphene could only be accessed indirectly. Here, we present a dynamical view on the Dirac cone by time- and angle-resolved photoemission spectroscopy. This allows us to show the quasi-instant thermalization of the electron gas to a temperature of ≈2000 K, to determine the time-resolved carrier density, and to disentangle the subsequent decay into excitations of optical phonons and acoustic phonons (directly and via supercollisions).


Physical Chemistry Chemical Physics | 2003

Doping of single-walled carbon nanotube bundles by Brønsted acids

Ralf Graupner; Jürgen Abraham; Andrea Vencelová; Thomas Seyller; Frank Hennrich; Manfred M. Kappes; Andreas Hirsch; L. Ley

Using X-ray induced photoelectron spectroscopy, the influence of Bronsted acids, namely sulfuric, nitric, and hydrochloric acid on the electronic properties of single-walled carbon nanotubes (SWCNTs) was investigated. Doping effects were monitored by changes in binding energy of the C 1s core level of the nanotubes. For all three acids, an acceptor type doping of the SWCNTs was observed by a shift of the C 1s core level towards lower binding energies. The inferred change of the Fermi-level position was 0.5 eV in the case of H2SO4, 0.2 eV in the case of HNO3, and 0.1 eV in the case of HCl. For HNO3 and HCl the doping was found to be unstable. The S 2p, N 1s, and Cl 2p core level spectra of the corresponding acid showed spectral features which can be attributed to the respective oxidation state of these anions in the acid, indicating that doping was induced by intercalation.


Physical Review B | 2010

Quantum oscillations and quantum Hall effect in epitaxial graphene

Johannes Jobst; Daniel Waldmann; Florian Speck; Roland Hirner; D. K. Maude; Thomas Seyller; Heiko B. Weber

Johannes Jobst, Daniel Waldmann, Florian Speck, Roland Hirner, Duncan K. Maude, Thomas Seyller, and Heiko B. Weber ∗ Lehrstuhl für Angewandte Physik, Universität Erlangen-Nürnberg, 91056 Erlangen, Germany Lehrstuhl für Technische Physik, Universität Erlangen-Nürnberg, 91056 Erlangen, Germany Laboratoire des Champs Magnétiques Intenses, 25 Avenue des Martyrs, 38042 Grenoble,France (Dated: August 14, 2009)


New Journal of Physics | 2008

Morphology of graphene thin film growth on SiC(0001)

Taisuke Ohta; Farid El Gabaly; Jessica L. McChesney; Konstantin V. Emtsev; Andreas K. Schmid; Thomas Seyller; Karsten Horn; Eli Rotenberg

Epitaxial films of graphene on SiC(0001) are interesting from a basic physics as well as an applications-oriented point of view. Here, we study the emerging morphology of in vacuo prepared graphene films using low-energy electron microscopy (LEEM) and angle-resolved photoemission spectroscopy (ARPES). We obtain an identification of single-layer and bilayer graphene films by comparing the characteristic features in electron reflectivity spectra in LEEM to the ?-band structure as revealed by ARPES. We demonstrate that LEEM serves as a tool to accurately determine the local extent of graphene layers as well as the layer thickness.


Nano Letters | 2009

Raman Topography and Strain Uniformity of Large-Area Epitaxial Graphene

Joshua A. Robinson; Conor Puls; Neal Staley; Joseph Stitt; Mark A. Fanton; Konstantin V. Emtsev; Thomas Seyller; Ying Liu

We report results of Raman spectroscopy studies of large-area epitaxial graphene grown on SiC. Our work reveals unexpectedly large variation in Raman shift resulting from graphene strain inhomogeneity, which is shown to be correlated with physical topography by coupling Raman spectroscopy with atomic force microscopy. We show that graphene strain can vary over a distance shorter than 300 nm and may be uniform only over roughly 1 microm. We show that nearly strain-free graphene is possible even in epitaxial graphene.


Applied Physics Letters | 2011

Highly p-doped epitaxial graphene obtained by fluorine intercalation

Andrew L. Walter; Ki-Joon Jeon; Florian Speck; Markus Ostler; Thomas Seyller; Luca Moreschini; Yong Su Kim; Young Jun Chang; Karsten Horn; Eli Rotenberg

We present a method for decoupling epitaxial graphene grown on SiC(0001) by intercalation of a layer of fluorine at the interface. The fluorine atoms do not enter into a covalent bond with graphene but rather saturate the substrate Si bonds. This configuration of the fluorine atoms induces a remarkably large hole density of p≈4.5×1013 cm−2, equivalent to the location of the Fermi level at 0.79 eV above the Dirac point ED.

Collaboration


Dive into the Thomas Seyller's collaboration.

Top Co-Authors

Avatar

Florian Speck

Chemnitz University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Konstantin V. Emtsev

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Eli Rotenberg

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

L. Ley

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Felix Fromm

Chemnitz University of Technology

View shared research outputs
Top Co-Authors

Avatar

Markus Ostler

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Taisuke Ohta

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar

Jessica L. McChesney

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge