Thomas Shupe
Wake Forest Institute for Regenerative Medicine
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Thomas Shupe.
Biomaterials | 2016
Yu Shrike Zhang; Andrea Arneri; Simone Bersini; Su Ryon Shin; Kai Zhu; Zahra Goli-Malekabadi; Julio Aleman; Cristina Colosi; Fabio Busignani; Valeria Dell'Erba; Colin E. Bishop; Thomas Shupe; Danilo Demarchi; Matteo Moretti; Marco Rasponi; Mehmet R. Dokmeci; Anthony Atala; Ali Khademhosseini
Engineering cardiac tissues and organ models remains a great challenge due to the hierarchical structure of the native myocardium. The need of integrating blood vessels brings additional complexity, limiting the available approaches that are suitable to produce integrated cardiovascular organoids. In this work we propose a novel hybrid strategy based on 3D bioprinting, to fabricate endothelialized myocardium. Enabled by the use of our composite bioink, endothelial cells directly bioprinted within microfibrous hydrogel scaffolds gradually migrated towards the peripheries of the microfibers to form a layer of confluent endothelium. Together with controlled anisotropy, this 3D endothelial bed was then seeded with cardiomyocytes to generate aligned myocardium capable of spontaneous and synchronous contraction. We further embedded the organoids into a specially designed microfluidic perfusion bioreactor to complete the endothelialized-myocardium-on-a-chip platform for cardiovascular toxicity evaluation. Finally, we demonstrated that such a technique could be translated to human cardiomyocytes derived from induced pluripotent stem cells to construct endothelialized human myocardium. We believe that our method for generation of endothelialized organoids fabricated through an innovative 3D bioprinting technology may find widespread applications in regenerative medicine, drug screening, and potentially disease modeling.
Biofabrication | 2016
Nupura S Bhise; Vijayan Manoharan; Solange Massa; Ali Tamayol; Masoumeh Ghaderi; Mario Miscuglio; Qi Lang; Yu Shrike Zhang; Su Ryon Shin; Giovanni Calzone; Nasim Annabi; Thomas Shupe; Colin E. Bishop; Anthony Atala; Mehmet R. Dokmeci; Ali Khademhosseini
The inadequacy of animal models in correctly predicting drug and biothreat agent toxicity in humans has resulted in a pressing need for in vitro models that can recreate the in vivo scenario. One of the most important organs in the assessment of drug toxicity is liver. Here, we report the development of a liver-on-a-chip platform for long-term culture of three-dimensional (3D) human HepG2/C3A spheroids for drug toxicity assessment. The bioreactor design allowed for in situ monitoring of the culture environment by enabling direct access to the hepatic construct during the experiment without compromising the platform operation. The engineered bioreactor could be interfaced with a bioprinter to fabricate 3D hepatic constructs of spheroids encapsulated within photocrosslinkable gelatin methacryloyl (GelMA) hydrogel. The engineered hepatic construct remained functional during the 30 days culture period as assessed by monitoring the secretion rates of albumin, alpha-1 antitrypsin, transferrin, and ceruloplasmin, as well as immunostaining for the hepatocyte markers, cytokeratin 18, MRP2 bile canalicular protein and tight junction protein ZO-1. Treatment with 15 mM acetaminophen induced a toxic response in the hepatic construct that was similar to published studies on animal and other in vitro models, thus providing a proof-of-concept demonstration of the utility of this liver-on-a-chip platform for toxicity assessment.
Drug Discovery Today | 2016
Aleksander Skardal; Thomas Shupe; Anthony Atala
In recent years, advances in tissue engineering and microfabrication technologies have enabled rapid growth in the areas of in vitro organoid development as well as organoid-on-a-chip platforms. These 3D model systems often are able to mimic human physiology more accurately than traditional 2D cultures and animal models. In this review, we describe the progress that has been made to generate organ-on-a-chip platforms and, more recently, more complex multi-organoid body-on-a-chip platforms and their applications. Importantly, these systems have the potential to dramatically impact biomedical applications in the areas of drug development, drug and toxicology screening, disease modeling, and the emerging area of personalized precision medicine.
Acta Biomaterialia | 2015
Aleksander Skardal; Mahesh Devarasetty; Hyun-Wook Kang; Ivy Mead; Colin E. Bishop; Thomas Shupe; Sang Jin Lee; John Jackson; James J. Yoo; Shay Soker; Anthony Atala
UNLABELLED Advancement of bioprinting technology is limited by the availability of materials that both facilitate bioprinting logistics as well as support cell viability and function by providing tissue-specific cues. Herein we describe a modular hyaluronic acid (HA) and gelatin-based hydrogel toolbox comprised of a 2-crosslinker, 2-stage polymerization technique, and the capability to provide tissue specific biochemically and mechanically accurate signals to cells within biofabricated tissue constructs. First, we prepared and characterized several tissue-derived decellularized extracellular matrix-based solutions, which contain complex combinations of growth factors, collagens, glycosaminoglycans, and elastin. These solutions can be incorporated into bioinks to provide the important biochemical cues of different tissue types. Second, we employed combinations of PEG-based crosslinkers with varying molecular weights, geometries (linear, 4-arm, and 8-arm), and functional groups to yield hydrogel bioinks that supported extrusion bioprinting and the capability to achieve final construct shear stiffness values ranging from approximately 100 Pa to 20 kPa. Lastly, we integrated these hydrogel bioinks with a 3-D bioprinting platform, and validated their use by bioprinting primary liver spheroids in a liver-specific bioink to create in vitro liver constructs with high cell viability and measurable functional albumin and urea output. This hydrogel bioink system has the potential to be a versatile tool for biofabrication of a wide range of tissue construct types. STATEMENT OF SIGNIFICANCE Biochemical and mechanical factors both have important implications in guiding the behavior of cells in vivo, yet both realms are rarely considered together in the context of biofabrication in vitro tissue construct models. We describe a modular hydrogel system that (1) facilitates extrusion bioprinting of cell-laden hydrogels, (2) incorporates tissue-specific factors derived from decellularized tissue extracellular matrix, thus mimicking biochemical tissue profile, and (3) allows control over mechanical properties to mimic the tissue stiffness. We believe that employing this technology to attend to both the biochemical and mechanical profiles of tissues, will allow us to more accurately recapitulate the in vivo environment of tissues while creating functional 3-D in vitro tissue constructs that can be used as disease models, personalized medicine, and in vitro drug and toxicology screening systems.
Proceedings of the National Academy of Sciences of the United States of America | 2017
Yu Shrike Zhang; Julio Aleman; Su Ryon Shin; Tugba Kilic; Duckjin Kim; Seyed Ali Mousavi Shaegh; Solange Massa; Reza Riahi; Su‐Kyoung Chae; Ning Hu; Huseyin Avci; Weijia Zhang; Antonia Silvestri; Amir Sanati Nezhad; Ahmad Manbohi; Fabio De Ferrari; Alessandro Polini; Giovanni Calzone; Noor Shaikh; Parissa Alerasool; Erica Budina; Jian Kang; Nupura S Bhise; João Ribas; Adel Pourmand; Aleksander Skardal; Thomas Shupe; Colin E. Bishop; Mehmet R. Dokmeci; Anthony Atala
Significance Monitoring human organ-on-a-chip systems presents a significant challenge, where the capability of in situ continual monitoring of organ behaviors and their responses to pharmaceutical compounds over extended periods of time is critical in understanding the dynamics of drug effects and therefore accurate prediction of human organ reactions. In this work, we report a fully integrated modular physical, biochemical, and optical sensing platform, interfaced through a fluidics-routing breadboard with a multi–organ-on-a-chip system to achieve in situ, continual, and automated sensing of microenvironment biophysical and biochemical parameters. It is anticipated that our platform technology that is conveniently compatible with existing organ-on-a-chip models will potentially enhance their performance in drug screening by providing a multitude of sensing data not previously available. Organ-on-a-chip systems are miniaturized microfluidic 3D human tissue and organ models designed to recapitulate the important biological and physiological parameters of their in vivo counterparts. They have recently emerged as a viable platform for personalized medicine and drug screening. These in vitro models, featuring biomimetic compositions, architectures, and functions, are expected to replace the conventional planar, static cell cultures and bridge the gap between the currently used preclinical animal models and the human body. Multiple organoid models may be further connected together through the microfluidics in a similar manner in which they are arranged in vivo, providing the capability to analyze multiorgan interactions. Although a wide variety of human organ-on-a-chip models have been created, there are limited efforts on the integration of multisensor systems. However, in situ continual measuring is critical in precise assessment of the microenvironment parameters and the dynamic responses of the organs to pharmaceutical compounds over extended periods of time. In addition, automated and noninvasive capability is strongly desired for long-term monitoring. Here, we report a fully integrated modular physical, biochemical, and optical sensing platform through a fluidics-routing breadboard, which operates organ-on-a-chip units in a continual, dynamic, and automated manner. We believe that this platform technology has paved a potential avenue to promote the performance of current organ-on-a-chip models in drug screening by integrating a multitude of real-time sensors to achieve automated in situ monitoring of biophysical and biochemical parameters.
American Journal of Pathology | 2013
Sayed-Hadi Mirmalek-Sani; David C. Sullivan; Cynthia Zimmerman; Thomas Shupe; Bryon E. Petersen
Liver disease affects millions of patients each year. The field of regenerative medicine promises alternative therapeutic approaches, including the potential to bioengineer replacement hepatic tissue. One approach combines cells with acellular scaffolds derived from animal tissue. The goal of this study was to scale up our rodent liver decellularization method to livers of a clinically relevant size. Porcine livers were cannulated via the hepatic artery, then perfused with PBS, followed by successive Triton X-100 and SDS solutions in saline buffer. After several days of rinsing, decellularized liver samples were histologically analyzed. In addition, biopsy specimens of decellularized scaffolds were seeded with hepatoblastoma cells for cytotoxicity testing or implanted s.c. into rodents to investigate scaffold immunogenicity. Histological staining confirmed cellular clearance from pig livers, with removal of nuclei and cytoskeletal components and widespread preservation of structural extracellular molecules. Scanning electron microscopy confirmed preservation of an intact liver capsule, a porous acellular lattice structure with intact vessels and striated basement membrane. Liver scaffolds supported cells over 21 days, and no increased immune response was seen with either allogeneic (rat-into-rat) or xenogeneic (pig-into-rat) transplants over 28 days, compared with sham-operated on controls. These studies demonstrate that successful decellularization of the porcine liver could be achieved with protocols developed for rat livers, yielding nonimmunogenic scaffolds for future hepatic bioengineering studies.
Gut | 2013
Giuseppe Orlando; Juan Domínguez Bendala; Thomas Shupe; Christopher R. Bergman; Khalil N. Bitar; Christopher H. Booth; Marco Carbone; Kenneth L. Koch; Jan Lerut; James Neuberger; Bryon E. Petersen; Camillo Ricordi; Anthony Atala; Robert J. Stratta; Shay Soker
This review illustrates promising regenerative medicine technologies that are being developed for the treatment of gastrointestinal diseases. The main strategies under validation to bioengineer or regenerate liver, pancreas, or parts of the digestive tract are twofold: engineering of progenitor cells and seeding of cells on supporting scaffold material. In the first case, stem cells are initially expanded under standard tissue culture conditions. Thereafter, these cells may either be delivered directly to the tissue or organ of interest, or they may be loaded onto a synthetic or natural three-dimensional scaffold that is capable of enhancing cell viability and function. The new construct harbouring the cells usually undergoes a maturation phase within a bioreactor. Within the bioreactor, cells are conditioned to adopt a phenotype similar to that displayed in the native organ. The specific nature of the scaffold within the bioreactor is critical for the development of this high-function phenotype. Efforts to bioengineer or regenerate gastrointestinal tract, liver and pancreas have yielded promising results and have demonstrated the immense potential of regenerative medicine. However, a myriad of technical hurdles must be overcome before transplantable, engineered organs become a reality.
Scientific Reports | 2017
Aleksander Skardal; Sean V. Murphy; Mahesh Devarasetty; Ivy Mead; Hyun Wook Kang; Young Joon Seol; Yu Shrike Zhang; Su Ryon Shin; Liang Zhao; Julio Aleman; Adam R. Hall; Thomas Shupe; Andre Kleensang; Mehmet R. Dokmeci; Sang Jin Lee; John Jackson; James J. Yoo; Thomas Hartung; Ali Khademhosseini; Shay Soker; Colin E. Bishop; Anthony Atala
Many drugs have progressed through preclinical and clinical trials and have been available – for years in some cases – before being recalled by the FDA for unanticipated toxicity in humans. One reason for such poor translation from drug candidate to successful use is a lack of model systems that accurately recapitulate normal tissue function of human organs and their response to drug compounds. Moreover, tissues in the body do not exist in isolation, but reside in a highly integrated and dynamically interactive environment, in which actions in one tissue can affect other downstream tissues. Few engineered model systems, including the growing variety of organoid and organ-on-a-chip platforms, have so far reflected the interactive nature of the human body. To address this challenge, we have developed an assortment of bioengineered tissue organoids and tissue constructs that are integrated in a closed circulatory perfusion system, facilitating inter-organ responses. We describe a three-tissue organ-on-a-chip system, comprised of liver, heart, and lung, and highlight examples of inter-organ responses to drug administration. We observe drug responses that depend on inter-tissue interaction, illustrating the value of multiple tissue integration for in vitro study of both the efficacy of and side effects associated with candidate drugs.
Hepatic Medicine : Evidence and Research | 2011
Houda Darwiche; Seh-Hoon Oh; Nicole C Steiger-Luther; Jennifer M. Williams; Dana G Pintilie; Thomas Shupe; Bryon E. Petersen
Background and aims Activation of the oval cell compartment occurs in the liver when hepatocytes are functionally compromised and/or unable to divide. Our goal was to investigate the systemic signals responsible for determining the efficiency of oval cell-mediated liver regeneration, focusing on the Notch signaling cascade. Methods The established oval cell induction protocol of 2-acetylaminofluorine (2-AAF) implantation followed by 70% surgical resection of the liver (partial hepatectomy, PH) was employed in a rat model. This oval cell induction model was further combined with injections of a γ-secretase inhibitor (GSI XX) to examine the effects of Notch inhibition on oval cell-aided regeneration of the liver. Results Notch signaling was found to be upregulated at the peak of oval cell induction during 2AAF-PH alone. Treatment with GSI XX led to interruption of the Notch signal, as shown by a decrease in expression of Hes1. While there was a robust oval cell response seen at day 11 post-PH, there was a measurable delay in differentiation when Notch was inhibited. This was confirmed morphologically as well as by immunohistochemistry for the oval cell markers, α-fetoprotein, OV-6, and CK19. The hepatocytes seen at day 22 demonstrated an enhanced hepatocellular mitoinhibition index (p21Waf1/Ki67), suggestive of dysregulated proliferation and cell cycle progression. Moreover, these hepatocytes exhibited decreased expression of hepatocyte functional markers, such as cytochrome P450 and glucose-6-phosphatase-α. Conclusion Taken together, these results identify the Notch signaling pathway as a potent regulator of differentiation and proliferation in oval cells, which is necessary for functional repair of the liver by oval cells.
Journal of The Mechanical Behavior of Biomedical Materials | 2016
Daniel B. Deegan; Cynthia Zimmerman; Aleksander Skardal; Anthony Atala; Thomas Shupe
Tissue engineering and cell based liver therapies have utilized primary hepatocytes with limited success due to the failure of hepatocytes to maintain their phenotype in vitro. In order to overcome this challenge, hyaluronic acid (HA) cell culture substrates were formulated to closely mimic the composition and stiffness of the normal liver cellular microenvironment. The stiffness of the substrate was modulated by adjusting HA hydrogel crosslinking. Additionally, the repertoire of bioactive molecules within the HA substrate was bolstered by supplementation with normal liver extracellular matrix (ECM). Primary human hepatocyte viability and phenotype were determined over a narrow physiologically relevant range of substrate stiffnesses from 600 to 4600Pa in both the presence and absence of liver ECM. Cell attachment, viability, and organization of the actin cytoskeleton improved with increased stiffness up to 4600Pa. These differences were not evident in earlier time points or substrates containing only HA. However, gene expression for the hepatocyte markers hepatocyte nuclear factor 4 alpha (HNF4α) and albumin significantly decreased on the 4600Pa stiffness at day 7 indicating that cells may not have maintained their phenotype long-term at this stiffness. Function, as measured by albumin secretion, varied with both stiffness and time in culture and peaked at day 7 at the 1200Pa stiffness, slightly below the stiffness of normal liver ECM at 3000Pa. Overall, gel stiffness affected primary human hepatocyte cell adhesion, functional marker expression, and morphological characteristics dependent on both the presence of liver ECM in gel substrates and time in culture.