Thomas Stegmann
National Autonomous University of Mexico
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Thomas Stegmann.
New Journal of Physics | 2016
Thomas Stegmann; Nikodem Szpak
In this work we compare two fundamentally different approaches to the electronic transport in deformed graphene: a) the condensed matter approach in which current flow paths are obtained by applying the non-equilibrium Greens function (NEGF) method to the tight-binding model with local strain, b) the general relativistic approach in which classical trajectories of relativistic point particles moving in a curved surface with a pseudo-magnetic field are calculated. The connection between the two is established in the long-wave limit via an effective Dirac Hamiltonian in curved space. Geometrical optics approximation, applied to focused current beams, allows us to directly compare the wave and the particle pictures. We obtain very good numerical agreement between the quantum and the classical approaches for a fairly wide set of parameters, improving with the increasing size of the system. The presented method offers an enormous reduction of complexity from irregular tight-binding Hamiltonians defined on large lattices to geometric language for curved continuous surfaces. It facilitates a comfortable and efficient tool for predicting electronic transport properties in graphene nanostructures with complicated geometries. Combination of the curvature and the pseudo-magnetic field paves the way to new interesting transport phenomena such as bending or focusing (lensing) of currents depending on the shape of the deformation. It can be applied in designing ultrasensitive sensors or in nanoelectronics.
Physical Review E | 2016
Adrian Ortega; Thomas Stegmann; Luis Benet
The coherent transport of n fermions in disordered networks of l single-particle states connected by k-body interactions is studied. These networks are modeled by embedded Gaussian random matrix ensemble (EGE). The conductance bandwidth and the ensemble-averaged total current attain their maximal values if the system is highly filled n∼l-1 and k∼n/2. For the cases k=1 and k=n the bandwidth is minimal. We show that for all parameters the transport is enhanced significantly whenever centrosymmetric embedded Gaussian ensemble (csEGE) are considered. In this case the transmission shows numerous resonances of perfect transport. Analyzing the transmission by spectral decomposition, we find that centrosymmetry induces strong correlations and enhances the extrema of the distributions. This suppresses destructive interference effects in the system and thus causes backscattering-free transmission resonances that enhance the overall transport. The distribution of the total current for the csEGE has a very large dominating peak for n=l-1, close to the highest observed currents.
European Physical Journal B | 2012
Thomas Stegmann; Matías Zilly; O. Újsághy; Dietrich E. Wolf
A simple statistical model for the effects of dephasing on electron transport in one-dimensional quantum systems is introduced, which allows to adjust the degree of phase and momentum randomization independently. Hence, the model is able to describe the transport in an intermediate regime between classical and quantum transport. The model is based on Büttiker’s approach using fictitious reservoirs for the dephasing effects. However, in contrast to other models, at the fictitious reservoirs complete phase randomization is assumed, which effectively divides the system into smaller coherent subsystems, and an ensemble average over randomly distributed dephasing reservoirs is calculated. This approach reduces not only the computation time but allows also to gain new insight into system properties. In this way, after deriving an efficient formula for the disorder-averaged resistance of a tight-binding chain, it is shown that the dephasing-driven transition from localized-exponential to ohmic-linear behavior is not affected by the degree of momentum randomizing dephasing.
New Journal of Physics | 2013
Thomas Stegmann; Dietrich E. Wolf; Axel Lorke
We study theoretically how electrons, coherently injected at one point on the boundary of a two-dimensional electron system, are focused by a perpendicular magnetic field B onto another point on the boundary. Using the non-equilibrium Greens function approach, we calculate the generalized four-point Hall resistance Rxy as a function of B. In weak fields, Rxy shows the characteristic equidistant peaks observed in the experiment and explained by classical cyclotron motion along the boundary. In strong fields, Rxy shows a single extended plateau reflecting the quantum Hall effect. In intermediate fields, we find superimposed upon the lower Hall plateaus anomalous oscillations, which are neither periodic in 1/B (quantum Hall effect) nor in B (classical cyclotron motion). The oscillations are explained by the interference between the occupied edge channels, which causes beatings in Rxy. In the case of two occupied edge channels, these beatings constitute a new commensurability between the magnetic flux enclosed within the edge channels and the flux quantum. Introducing decoherence and a partially specular boundary shows that this new effect is quite robust.
Annalen der Physik | 2015
Thomas Stegmann; Axel Lorke
The current flow along the boundary of graphene stripes in a perpendicular magnetic field is studied theoretically by the nonequilibrium Greens function method. In the case of specular reflections at the boundary, the Hall resistance shows equidistant peaks, which are due to classical cyclotron motion. When the strength of the magnetic field is increased, anomalous resistance oscillations are observed, similar to those found in a nonrelativistic 2D electron gas [New. J. Phys. 15:113047 (2013)]. Using a simplified model, which allows to solve the Dirac equation analytically, the oscillations are explained by the interference between the occupied edge states causing beatings in the Hall resistance. A rule of thumb is given for the experimental observability. Furthermore, the local current flow in graphene is affected significantly by the boundary geometry. A finite edge current flows on armchair edges, while the current on zigzag edges vanishes completely. The quantum Hall staircase can be observed in the case of diffusive boundary scattering. The number of spatially separated edge channels in the local current equals the number of occupied Landau levels. The edge channels in the local density of states are smeared out but can be made visible if only a subset of the carbon atoms is taken into account.
European Physical Journal B | 2014
Thomas Stegmann; O. Újsághy; Dietrich E. Wolf
Electron transport through disordered quasi one-dimensional quantum systems is studied. Decoherence is taken into account by a spatial distribution of virtual reservoirs, which represent local interactions of the conduction electrons with their environment. We show that the decoherence distribution has observable effects on the transport. If the decoherence reservoirs are distributed randomly without spatial correlations, a minimal degree of decoherence is necessary to obtain Ohmic conduction. Below this threshold the system is localized and thus, a decoherence driven metal-insulator transition is found. In contrast, for homogenously distributed decoherence, any finite degree of decoherence is sufficient to destroy localization. Thus, the presence or absence of localization in a disordered one-dimensional system may give important insight about how the electron phase is randomized.
Physics Letters A | 2017
Thomas Stegmann; John A. Franco-Villafañe; Yenni P. Ortiz; Ulrich Kuhl; Fabrice Mortessagne; Thomas H. Seligman
Abstract A novel approach to investigate the electron transport of cis - and trans -polyacetylene chains in the single-electron approximation is presented by using microwave emulation measurements and tight-binding calculations. In the emulation we take into account the different electronic couplings due to the double bonds leading to coupled dimer chains. The relative coupling constants are adjusted by DFT calculations. For sufficiently long chains a transport band gap is observed if the double bonds are present, whereas for identical couplings no band gap opens. The band gap can be observed also in relatively short chains, if additional edge atoms are absent, which cause strong resonance peaks within the band gap. The experimental results are in agreement with our tight-binding calculations using the nonequilibrium Greens function method. The tight-binding calculations show that it is crucial to include third nearest neighbor couplings to obtain the gap in the cis-polyacetylene.
New Journal of Physics | 2018
Thomas Stegmann; O. Újsághy; Dietrich E. Wolf
A new statistical model for the combined effects of decoherence, energy redistribution and dissipation on electron transport in large quantum systems is introduced. The essential idea is to consider the electron phase information to be lost only at randomly chosen regions with an average distance corresponding to the decoherence length. In these regions the electrons energy can be unchanged or redistributed within the electron system or dissipated to a heat bath. The different types of scattering and the decoherence leave distinct fingerprints in the energy distribution functions. They can be interpreted as a mixture of unthermalized and thermalized electrons. In the case of weak decoherence, the fraction of thermalized electrons show electrical and thermal contact resistances. In the regime of incoherent transport the proposed model is equivalent to a Boltzmann equation. The model is applied to experiments with carbon nanotubes. The excellent agreement of the model with the experimental data allows to determine the scattering lengths of the system.
2D Materials | 2018
Thomas Stegmann; Nikodem Szpak
Elastic deformations of graphene can significantly change the flow paths and valley polarization of the electric currents. We investigate these phenomena in graphene nanoribbons with localized out-of-plane deformations by means of tight-binding transport calculations. Such deformations can split the current into two beams of almost completely valley polarized electrons and give rise to a valley voltage. These properties are observed for a fairly wide set of experimentally accessible parameters. We propose a valleytronic nanodevice in which a high polarization of the electrons comes along with a high transmission making the device very efficient. In order to gain a better understanding of these effects, we also treat the system in the continuum limit in which the electronic excitations can be described by the Dirac equation coupled to curvature and a pseudo-magnetic field. Semiclassical trajectories offer then an additional insight into the balance of forces acting on the electrons and provide a convenient tool for predicting the behavior of the current flow paths. The proposed device can also be used for a sensitive measurement of graphene deformations.
Chemical Physics Letters | 2017
Yenni P. Ortiz; Thomas Stegmann; Douglas J. Klein; Thomas H. Seligman
Abstract We study effects of different configurations of adsorbates on the vibrational modes as well as symmetries of polyacenes and poly- p -phenylenes focusing on lithium atom adsorption. We found that the spectra of the vibrational modes distinguish the different configurations. For more regular adsorption schemes the lowest states are bending and torsion modes of the skeleton, which are essentially followed by the adsorbate. On poly- p -phenylenes we found that lithium adsorption reduces and often eliminates the torsion between rings thus increasing symmetry. There is spontaneous symmetry breaking in poly- p -phenylenes due to double adsorption of lithium atoms on alternating rings.