Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thomas Stratmann is active.

Publication


Featured researches published by Thomas Stratmann.


Journal of Immunology | 2000

The I-Ag7 MHC Class II Molecule Linked to Murine Diabetes Is a Promiscuous Peptide Binder

Thomas Stratmann; Vasso Apostolopoulos; Valérie Mallet-Designe; Adam L. Corper; Christopher A. Scott; Ian A. Wilson; Angray S. Kang; Luc Teyton

Susceptibility to insulin-dependent diabetes mellitus is linked to MHC class II genes. The only MHC class II molecule expressed by nonobese diabetic (NOD) mice, I-Ag7, shares a common α-chain with I-Ad but has a peculiar β-chain. As with most β-chain alleles linked to diabetes susceptibility, I-Ag7 contains a nonaspartic residue at position β57. We have produced large amounts of empty I-Ag7 molecules using a fly expression system to characterize its biochemical properties and peptide binding by phage-displayed peptide libraries. The identification of a specific binding peptide derived from glutamic acid decarboxylase (GAD65) has allowed us to crystallize and obtain the three-dimensional structure of I-Ag7. Structural information was critical in evaluating the binding studies. I-Ag7, like I-Ad, appears to be very promiscuous in terms of peptide binding. Their binding motifs are degenerate and contain small and/or small hydrophobic residues at P4 and P6 of the peptide, a motif frequently found in most globular proteins. The degree of promiscuity is increased for I-Ag7 over I-Ad as a consequence of a larger P9 pocket that can specifically accommodate negatively charged residues, as well as possibly residues with bulky side chains. So, although I-Ad and I-Ag7 are structurally closely related, stable molecules and good peptide binders, they differ functionally in their ability to bind significantly different peptide repertoires that are heavily influenced by the presence or the absence of a negatively charged residue at position 57 of the β-chain. These characteristics link I-Ag7 with autoimmune diseases, such as insulin-dependent diabetes mellitus.


Nature | 2016

Expanding antigen-specific regulatory networks to treat autoimmunity

Xavier Clemente-Casares; Jesús Blanco; Poornima Ambalavanan; Jun Yamanouchi; Santiswarup Singha; Cesar Fandos; Sue Tsai; Jinguo Wang; Nahir Garabatos; Cristina Izquierdo; Smriti M. Agrawal; Michael B. Keough; V. Wee Yong; Eddie James; Anna Moore; Yang Yang; Thomas Stratmann; Pau Serra; Pere Santamaria

Regulatory T cells hold promise as targets for therapeutic intervention in autoimmunity, but approaches capable of expanding antigen-specific regulatory T cells in vivo are currently not available. Here we show that systemic delivery of nanoparticles coated with autoimmune-disease-relevant peptides bound to major histocompatibility complex class II (pMHCII) molecules triggers the generation and expansion of antigen-specific regulatory CD4+ T cell type 1 (TR1)-like cells in different mouse models, including mice humanized with lymphocytes from patients, leading to resolution of established autoimmune phenomena. Ten pMHCII-based nanomedicines show similar biological effects, regardless of genetic background, prevalence of the cognate T-cell population or MHC restriction. These nanomedicines promote the differentiation of disease-primed autoreactive T cells into TR1-like cells, which in turn suppress autoantigen-loaded antigen-presenting cells and drive the differentiation of cognate B cells into disease-suppressing regulatory B cells, without compromising systemic immunity. pMHCII-based nanomedicines thus represent a new class of drugs, potentially useful for treating a broad spectrum of autoimmune conditions in a disease-specific manner.


Journal of Clinical Investigation | 2003

Susceptible MHC alleles, not background genes, select an autoimmune T cell reactivity

Thomas Stratmann; Valérie Mallet-Designe; Laurent Poirot; Dorian B. McGavern; Grigoriy Losyev; Cathleen M. Dobbs; Michael B. A. Oldstone; Kenji Yoshida; Hitoshi Kikutani; Diane Mathis; Christophe Benoist; Kathryn Haskins; Luc Teyton

To detect and characterize autoreactive T cells in diabetes-prone NOD mice, we have developed a multimeric MHC reagent with high affinity for the BDC-2.5 T cell receptor, which is reactive against a pancreatic autoantigen. A distinct population of T cells is detected in NOD mice that recognizes the same MHC/peptide target. These T cells are positively selected in the thymus at a surprisingly high frequency and exported to the periphery. They are activated specifically in the pancreatic LNs, demonstrating an autoimmune specificity that recapitulates that of the BDC-2.5 cell. These phenomena are also observed in mouse lines that share with NOD the H-2g7 MHC haplotype but carry diabetes-resistance background genes. Thus, a susceptible haplotype at the MHC seems to be the only element required for the selection and emergence of autoreactive T cells, without requiring other diabetogenic loci from the NOD genome.


Journal of Immunology | 2003

Detection of low-avidity CD4+ T cells using recombinant artificial APC: following the antiovalbumin immune response.

Valérie Mallet-Designe; Thomas Stratmann; Dirk Homann; Francis R. Carbone; Michael B. A. Oldstone; Luc Teyton

Subtle differences oppose CD4+ to CD8+ T cell physiologies that lead to different arrays of effector functions. Interestingly, this dichotomy has also unexpected practical consequences such as the inefficacy of many MHC class II tetramers in detecting specific CD4+ T cells. As a mean to study the CD4+ anti-OVA response in H-2d and H-2b genetic backgrounds, we developed I-Ad- and I-Ab-OVA recombinant MHC monomers and tetramers. We were able to show that in this particular system, despite normal biological activity, MHC class II tetramers failed to stain specific T cells. This failure was shown to be associated with a lack of cooperation between binding sites within the tetramer as measured by surface plasmon resonance. This limited cooperativeness translated into a low “functional avidity” and very transient binding of the tetramers to T cells. To overcome this biophysical barrier, recombinant artificial APC that display MHC molecules in a lipid bilayer were developed. The plasticity and size of the MHC-bearing fluorescent liposomes allowed binding to Ag-specific T cells and the detection of low numbers of anti-OVA T cells following immunization. The same liposomes were able, at 37°C, to induce the full reorganization of the T cell signaling molecules and the formation of an immunological synapse. Artificial APC will allow T cell detection and the dissection of the molecular events of T cell activation and will help us understand the fundamental differences between CD4+ and CD8+ T cells.


Vaccine | 2015

Cholera Toxin Subunit B as Adjuvant--An Accelerator in Protective Immunity and a Break in Autoimmunity

Thomas Stratmann

Cholera toxin subunit B (CTB) is the nontoxic portion of cholera toxin. Its affinity to the monosialotetrahexosylganglioside (GM1) that is broadly distributed in a variety of cell types including epithelial cells of the gut and antigen presenting cells, macrophages, dendritic cells, and B cells, allows its optimal access to the immune system. CTB can easily be expressed on its own in a variety of organisms, and several approaches can be used to couple it to antigens, either by genetic fusion or by chemical manipulation, leading to strongly enhanced immune responses to the antigens. In autoimmune diseases, CTB has the capacity to evoke regulatory responses and to thereby dampen autoimmune responses, in several but not all animal models. It remains to be seen whether the latter approach translates to success in the clinic, however, the versatility of CTB to manipulate immune responses in either direction makes this protein a promising adjuvant for vaccine development.


Seminars in Cell & Developmental Biology | 2008

Chromatin, photoperiod and the Arabidopsis circadian clock: A question of time

Thomas Stratmann; Paloma Más

Plants, as many other organisms, synchronize the timing of their physiology and development by using an endogenous mechanism called circadian clock. Perception of environmental changes during the day-night cycle is crucial for circadian function, which relies on transcriptional feedback loops at the core of a central oscillator. Recent studies in Arabidopsis have shown that the transcriptional regulation of clock gene expression is governed by rhythmic changes in chromatin structure. The chromatin remodelling activities relevant for clock function are modulated by day-length or photoperiod, suggesting a mechanism by which the plant clock synchronizes development with the external time. Evidence that a central component of the mammalian clock has histone acetyltransferase activity suggests that chromatin remodelling has evolved as an important mechanism for circadian function.


Journal of Immunology | 2004

Terminal Deoxynucleotidyltransferase Deficiency Decreases Autoimmune Disease in Diabetes-Prone Nonobese Diabetic Mice and Lupus-Prone MRL-Faslpr Mice

Ian F. Robey; Melissa Peterson; Marc S. Horwitz; Dwight H. Kono; Thomas Stratmann; Argyrios N. Theofilopoulos; Nora Sarvetnick; Luc Teyton; Ann J. Feeney

The wide diversity of the T and B Ag receptor repertoires becomes even more extensive postneonatally due to the activity of TdT, which adds nontemplated N nucleotides to Ig and TCR coding ends during V(D)J recombination. In addition, complementarity-determining region 3 sequences formed in the absence of TdT are more uniform due to the use of short sequence homologies between the V, D, and J genes. Thus, the action of TdT produces an adult repertoire that is both different from, and much larger than, the repertoire of the neonate. We have generated TdT-deficient nonobese diabetic (NOD) and MRL-Faslpr mice, and observed a decrease in the incidence of autoimmune disease, including absence of diabetes and decreased pancreatic infiltration in NOD TdT−/− mice, and reduced glomerulonephritis and increased life span in MRL-Faslpr TdT−/− mice. Using tetramer staining, TdT−/− and TdT+/+ NOD mice showed similar frequencies of the diabetogenic BDC 2.5 CD4+ T cells. We found no increase in CD4+CD25+ regulatory T cells in NOD TdT−/− mice. Thus, TdT deficiency ameliorates the severity of disease in both lupus and diabetes, two very disparate autoimmune diseases that affect different organs, with damage conducted by different effector cell types. The neonatal repertoire appears to be deficient in autoreactive T and/or B cells with high enough affinities to induce end-stage disease. We suggest that the paucity of autoreactive specificities created in the N region-lacking repertoire, and the resultant protection afforded to the newborn, may be the reason that TdT expression is delayed in ontogeny.


PLOS ONE | 2015

Use of autoantigen-loaded phosphatidylserine-liposomes to arrest autoimmunity in type 1 diabetes

Irma Pujol-Autonell; Arnau Serracant-Prat; Mary Cano-Sarabia; Rosa Maria Ampudia; Silvia Rodríguez-Fernández; Alex Sánchez; Cristina Izquierdo; Thomas Stratmann; Manuel Puig-Domingo; Daniel Maspoch; Joan Verdaguer; Marta Vives-Pi

Introduction The development of new therapies to induce self-tolerance has been an important medical health challenge in type 1 diabetes. An ideal immunotherapy should inhibit the autoimmune attack, avoid systemic side effects and allow β-cell regeneration. Based on the immunomodulatory effects of apoptosis, we hypothesized that apoptotic mimicry can help to restore tolerance lost in autoimmune diabetes. Objective To generate a synthetic antigen-specific immunotherapy based on apoptosis features to specifically reestablish tolerance to β-cells in type 1 diabetes. Methods A central event on the surface of apoptotic cells is the exposure of phosphatidylserine, which provides the main signal for efferocytosis. Therefore, phosphatidylserine-liposomes loaded with insulin peptides were generated to simulate apoptotic cells recognition by antigen presenting cells. The effect of antigen-specific phosphatidylserine-liposomes in the reestablishment of peripheral tolerance was assessed in NOD mice, the spontaneous model of autoimmune diabetes. MHC class II-peptide tetramers were used to analyze the T cell specific response after treatment with phosphatidylserine-liposomes loaded with peptides. Results We have shown that phosphatidylserine-liposomes loaded with insulin peptides induce tolerogenic dendritic cells and impair autoreactive T cell proliferation. When administered to NOD mice, liposome signal was detected in the pancreas and draining lymph nodes. This immunotherapy arrests the autoimmune aggression, reduces the severity of insulitis and prevents type 1 diabetes by apoptotic mimicry. MHC class II tetramer analysis showed that peptide-loaded phosphatidylserine-liposomes expand antigen-specific CD4+ T cells in vivo. The administration of phosphatidylserine-free liposomes emphasizes the importance of phosphatidylserine in the modulation of antigen-specific CD4+ T cell expansion. Conclusions We conclude that this innovative immunotherapy based on the use of liposomes constitutes a promising strategy for autoimmune diseases.


Molecular Immunology | 2008

Anti-peripherin B lymphocytes are positively selected during diabetogenesis.

Jorge Carrillo; Maria C. Puertas; Raquel Planas; Xavier Pastor; Aurora Alba; Thomas Stratmann; Ricardo Pujol-Borrell; Rosa Maria Ampudia; Marta Vives-Pi; Joan Verdaguer

Rearrangement analysis of immunoglobulin genes is an exceptional opportunity to look back at the B lymphocyte differentiation during ontogeny and the subsequent immune response, and thus to study the selective pressures involved in autoimmune disorders. In a recent study to characterize the antigenic specificity of B lymphocytes during T1D progression, we generated hybridomas of islet-infiltrating B lymphocytes from NOD mice and other related strains developing insulitis, but with different degrees of susceptibility to T1D. We found that a sizable proportion of hybridomas produced monoclonal antibodies reactive to peripherin, an intermediate filament protein mainly found in the peripheral nervous system. Moreover, we found that anti-peripherin antibody-producing hybridomas originated from B lymphocytes that had undergone immunoglobulin class switch recombination, a characteristic of secondary immune response. Therefore, in the present study we performed immunoglobulin VL and VH analysis of these hybridomas to ascertain whether they were derived from B lymphocytes that had undergone antigen-driven selection. The results indicated that whereas some anti-peripherin hybridomas showed signs of oligoclonality, somatic hypermutation and/or secondary rearrangements (receptor edition and receptor revision), others seemed to directly derive from the preimmune repertoire. In view of these results, we conclude that anti-peripherin B lymphocytes are positively selected and primed in the course of T1D development in NOD mice, and reinforce the idea that peripherin is a relevant autoantigen targeted during T1D development in this animal model.


Journal of Immunology | 2014

In Vivo Detection of Peripherin-Specific Autoreactive B Cells during Type 1 Diabetes Pathogenesis

Nahir Garabatos; Raimon Alvarez; Jorge Carrillo; Jorge Carrascal; Cristina Izquierdo; Harold D. Chapman; Maximiliano Presa; Conchi Mora; David V. Serreze; Joan Verdaguer; Thomas Stratmann

Autoreactive B cells are essential for the pathogenesis of type 1 diabetes. The genesis and dynamics of autoreactive B cells remain unknown. In this study, we analyzed the immune response in the NOD mouse model to the neuronal protein peripherin (PRPH), a target Ag of islet-infiltrating B cells. PRPH autoreactive B cells recognized a single linear epitope of this protein, in contrast to the multiple epitope recognition commonly observed during autoreactive B cell responses. Autoantibodies to this epitope were also detected in the disease-resistant NOR and C57BL/6 strains. To specifically detect the accumulation of these B cells, we developed a novel approach, octameric peptide display, to follow the dynamics and localization of anti-PRPH B cells during disease progression. Before extended insulitis was established, anti-PRPH B cells preferentially accumulated in the peritoneum. Anti-PRPH B cells were likewise detected in C57BL/6 mice, albeit at lower frequencies. As disease unfolded in NOD mice, anti-PRPH B cells invaded the islets and increased in number at the peritoneum of diabetic but not prediabetic mice. Isotype-switched B cells were only detected in the peritoneum. Anti-PRPH B cells represent a heterogeneous population composed of both B1 and B2 subsets. In the spleen, anti-PRPH B cell were predominantly in the follicular subset. Therefore, anti-PRPH B cells represent a heterogeneous population that is generated early in life but proliferates as diabetes is established. These findings on the temporal and spatial progression of autoreactive B cells should be relevant for our understanding of B cell function in diabetes pathogenesis.

Collaboration


Dive into the Thomas Stratmann's collaboration.

Top Co-Authors

Avatar

Luc Teyton

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David V. Serreze

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar

Angray S. Kang

University of Westminster

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge