Thomas Stützle
Université libre de Bruxelles
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Thomas Stützle.
Future Generation Computer Systems | 2000
Thomas Stützle; Holger H. Hoos
Abstract Ant System, the first Ant Colony Optimization algorithm, showed to be a viable method for attacking hard combinatorial optimization problems. Yet, its performance, when compared to more fine-tuned algorithms, was rather poor for large instances of traditional benchmark problems like the Traveling Salesman Problem. To show that Ant Colony Optimization algorithms could be good alternatives to existing algorithms for hard combinatorial optimization problems, recent research in this area has mainly focused on the development of algorithmic variants which achieve better performance than Ant System. In this paper, we present MAX – MIN Ant System ( MM AS ), an Ant Colony Optimization algorithm derived from Ant System. MM AS differs from Ant System in several important aspects, whose usefulness we demonstrate by means of an experimental study. Additionally, we relate one of the characteristics specific to MM AS — that of using a greedier search than Ant System — to results from the search space analysis of the combinatorial optimization problems attacked in this paper. Our computational results on the Traveling Salesman Problem and the Quadratic Assignment Problem show that MM AS is currently among the best performing algorithms for these problems.
IEEE Computational Intelligence Magazine | 2006
Marco Dorigo; Mauro Birattari; Thomas Stützle
The introduction of ant colony optimization (ACO) and to survey its most notable applications are discussed. Ant colony optimization takes inspiration from the forging behavior of some ant species. These ants deposit Pheromone on the ground in order to mark some favorable path that should be followed by other members of the colony. The model proposed by Deneubourg and co-workers for explaining the foraging behavior of ants is the main source of inspiration for the development of ant colony optimization. In ACO a number of artificial ants build solutions to an optimization problem and exchange information on their quality through a communication scheme that is reminiscent of the one adopted by real ants. ACO algorithms is introduced and all ACO algorithms share the same idea and the ACO is formalized into a meta-heuristics for combinatorial problems. It is foreseeable that future research on ACO will focus more strongly on rich optimization problems that include stochasticity.
arXiv: Optimization and Control | 2001
Helena Ramalhinho Dias Lourenço; Olivier C. Martin; Thomas Stützle
Iterated Local Search has many of the desirable features of a metaheuristic: it is simple, easy to implement, robust, and highly effective. The essential idea of Iterated Local Search lies in focusing the search not on the full space of solutions but on a smaller subspace defined by the solutions that are locally optimal for a given optimization engine. The success of Iterated Local Search lies in the biased sampling of this set of local optima. How effective this approach turns out to be depends mainly on the choice of the local search, the perturbations, and the acceptance criterion. So far, in spite of its conceptual simplicity, it has lead to a number of state-of-the-art results without the use of too much problem- specific knowledge. But with further work so that the different modules are well adapted to the problem at hand, Iterated Local Search can often become a competitive or even state of the art algorithm. The purpose of this review is both to give a detailed description of this metaheuristic and to show where it stands in terms of performance.
ieee international conference on evolutionary computation | 1997
Thomas Stützle; Holger H. Hoos
Ant System is a general purpose algorithm inspired by the study of the behavior of ant colonies. It is based on a cooperative search paradigm that is applicable to the solution of combinatorial optimization problems. We introduce MAX-MIN Ant System, an improved version of basic Ant System, and report our results for its application to symmetric and asymmetric instances of the well known traveling salesman problem. We show how MAX-MIN Ant System can be significantly improved, extending it with local search heuristics. Our results clearly show that MAX-MIN Ant System has the property of effectively guiding the local search heuristics towards promising regions of the search space by generating good initial tours.
Archive | 2003
Marco Dorigo; Thomas Stützle
The field of ACO algorithms is very lively, as testified, for example, by the successful biannual workshop (ANTS—From Ant Colonies to Artificial Ants: A Series of International Workshops on Ant Algorithms; http://iridia.ulb.ac.be/~ants/) where researchers meet to discuss the properties of ACO and other ant algorithms, both theoretically and experimentally.
European Journal of Operational Research | 2007
Rubén Ruiz; Thomas Stützle
Over the last decade, many metaheuristics have been applied to the flowshop scheduling problem, ranging from Simulated Annealing or Tabu Search to complex hybrid techniques. Some of these methods provide excellent effectiveness and efficiency at the expense of being utterly complicated. In fact, several published methods require substantial implementation efforts, exploit problem specific speed-up techniques that cannot be applied to slight variations of the original problem, and often re-implementations of these methods by other researchers produce results that are quite different from the original ones. In this work we present a new iterated greedy algorithm that applies two phases iteratively, named destruction, were some jobs are eliminated from the incumbent solution, and construction, where the eliminated jobs are reinserted into the sequence using the well known NEH construction heuristic. Optionally, a local search can be applied after the construction phase. Our iterated greedy algorithm is both very simple to implement and, as shown by experimental results, highly effective when compared to state-of-the-art methods.
Journal of Chemical Information and Modeling | 2009
Oliver Korb; Thomas Stützle; Thomas E. Exner
In this paper we present two empirical scoring functions, PLANTS(CHEMPLP) and PLANTS(PLP), designed for our docking algorithm PLANTS (Protein-Ligand ANT System), which is based on ant colony optimization (ACO). They are related, regarding their functional form, to parts of already published scoring functions and force fields. The parametrization procedure described here was able to identify several parameter settings showing an excellent performance for the task of pose prediction on two test sets comprising 298 complexes in total. Up to 87% of the complexes of the Astex diverse set and 77% of the CCDC/Astex clean listnc (noncovalently bound complexes of the clean list) could be reproduced with root-mean-square deviations of less than 2 A with respect to the experimentally determined structures. A comparison with the state-of-the-art docking tool GOLD clearly shows that this is, especially for the druglike Astex diverse set, an improvement in pose prediction performance. Additionally, optimized parameter settings for the search algorithm were identified, which can be used to balance pose prediction reliability and search speed.
IEEE Transactions on Evolutionary Computation | 2002
Thomas Stützle; Marco Dorigo
We prove some convergence properties for a class of ant colony optimization algorithms. In particular, we prove that for any small constant /spl epsiv/ > 0 and for a sufficiently large number of algorithm iterations t, the probability of finding an optimal solution at least once is P*(t) /spl ges/ 1 - /spl epsiv/ and that this probability tends to 1 for t/spl rarr//spl infin/. We also prove that, after an optimal solution has been found, it takes a finite number of iterations for the pheromone trails associated to the found optimal solution to grow higher than any other pheromone trail and that, for t/spl rarr//spl infin/, any fixed ant will produce the optimal solution during the tth iteration with probability P /spl ges/ 1 /spl epsiv//spl circ/(/spl tau//sub min/, /spl tau//sub max/), where /spl tau//sub min/ and /spl tau//sub max/ are the minimum and maximum values that can be taken by pheromone trails.
Archive | 2010
Marco Dorigo; Thomas Stützle
Ant Colony Optimization (ACO) is a metaheuristic that is inspired by the pheromone trail laying and following behavior of some ant species. Artificial ants in ACO are stochastic solution construction procedures that build candidate solutions for the problem instance under concern by exploiting (artificial) pheromone information that is adapted based on the ants’ search experience and possibly available heuristic information. Since the proposal of the Ant System, the first ACO algorithm, many significant research results have been obtained. These contributions focused on the development of high-performing algorithmic variants, the development of a generic algorithmic framework for ACO algorithms, successful applications of ACO algorithms to a wide range of computationally hard problems, and the theoretical understanding of properties of ACO algorithms. This chapter reviews these developments and gives an overview of recent research trends in ACO.
European Journal of Operational Research | 2006
Thomas Stützle
Iterated local search (ILS) is a simple and powerful stochastic local search method. This article presents and analyzes the application of ILS to the quadratic assignment problem (QAP). We justify the potential usefulness of an ILS approach to this problem by an analysis of the QAP search space. However, an analysis of the run-time behavior of a basic ILS algorithm reveals a stagnation behavior which strongly compromises its performance. To avoid this stagnation behavior, we enhance the ILS algorithm using acceptance criteria that allow moves to worse local optima and we propose population-based ILS extensions. An experimental evaluation of the enhanced ILS algorithms shows their excellent performance when compared to other state-of-the-art algorithms for the QAP.
Collaboration
Dive into the Thomas Stützle's collaboration.
Dalle Molle Institute for Artificial Intelligence Research
View shared research outputs