Thomas T. Wilheit
Texas A&M University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Thomas T. Wilheit.
Journal of Applied Meteorology | 2001
Christian D. Kummerow; Ye Hong; William S. Olson; Song Yang; Robert F. Adler; J. Mccollum; Ralph Ferraro; Grant W. Petty; Dong-Bin Shin; Thomas T. Wilheit
Abstract This paper describes the latest improvements applied to the Goddard profiling algorithm (GPROF), particularly as they apply to the Tropical Rainfall Measuring Mission (TRMM). Most of these improvements, however, are conceptual in nature and apply equally to other passive microwave sensors. The improvements were motivated by a notable overestimation of precipitation in the intertropical convergence zone. This problem was traced back to the algorithms poor separation between convective and stratiform precipitation coupled with a poor separation between stratiform and transition regions in the a priori cloud model database. In addition to now using an improved convective–stratiform classification scheme, the new algorithm also makes use of emission and scattering indices instead of individual brightness temperatures. Brightness temperature indices have the advantage of being monotonic functions of rainfall. This, in turn, has allowed the algorithm to better define the uncertainties needed by the sc...
Journal of Applied Meteorology | 1977
Thomas T. Wilheit; A. T. C. Chang; M. S. V. Rao; Edward B. Rodgers; J. S. Theon
Abstract A theoretical model for calculating microwave radiative transfer in raining atmospheres is developed. These calculations are compared with microwave brightness temperatures at a wavelength of 1.55 cm measured by the Electrically Scanning Microwave Radiometer (ESMR) on the Nimbus 5 satellite and rain rates derived from WSR-57 meteorological radar measurements. A specially designed ground-based verification experiment was also performed, wherein upward viewing microwave brightness temperature measurements at wavelengths of 1.55 and 0.81 cm were compared with directly measured rain rates. It is shown that over ocean areas, brightness temperature measurements from ESMR may be interpreted in terms of rain rate with about an accuracy of a factor of 2 over the range 1–25 mm h−1 rain rate.
Journal of Atmospheric and Oceanic Technology | 1991
Thomas T. Wilheit; Alfred T. C. Chang
Abstract An algorithm for the estimation of monthly rain totals for 5° cells over the oceans from histograms of SSM/I brightness temperatures has been developed. Them are three novel features to this algorithm. First, it uses knowledge of the form of the rainfall intensity probability density function to augment the measurements. Second, a linear combination of the 19.35 and 22.235 GHz channels has been employed to reduce the impact of variability of water vapor. Third, an objective technique has been developed to estimate the rain layer thickness from the 19.35- and 22.235-GHz brightness temperature histograms. Comparison with climatologies and the GATE radar observations suggest that the estimates are reasonable in spite of not having a beam-filling correction. By-products of the retrievals indicate that the SSM/I instrument noise level and calibration stability am quite good.
Journal of the Atmospheric Sciences | 1998
Eric A. Smith; J. E. Lamm; Robert F. Adler; J. Alishouse; Kazumasa Aonashi; E. C. Barrett; P. Bauer; W. Berg; A. Chang; Ralph Ferraro; J. Ferriday; S. Goodman; Norman C. Grody; C. Kidd; Dominic Kniveton; Christian D. Kummerow; Guosheng Liu; Frank S. Marzano; Alberto Mugnai; William S. Olson; Grant W. Petty; Akira Shibata; Roy W. Spencer; F. Wentz; Thomas T. Wilheit; Edward J. Zipser
The second WetNet Precipitation Intercomparison Project (PIP-2) evaluates the performance of 20 satellite precipitation retrieval algorithms, implemented for application with Special Sensor Microwave/Imager (SSM/I) passive microwave (PMW) measurements and run for a set of rainfall case studies at full resolution‐instantaneous space‐timescales. The cases are drawn from over the globe during all seasons, for a period of 7 yr, over a 608N‐ 178S latitude range. Ground-based data were used for the intercomparisons, principally based on radar measurements but also including rain gauge measurements. The goals of PIP-2 are 1) to improve performance and accuracy of different SSM/I algorithms at full resolution‐instantaneous scales by seeking a better understanding of the relationship between microphysical signatures in the PMW measurements and physical laws employed in the algorithms; 2) to evaluate the pros and cons of individual algorithms and their subsystems in order to seek optimal ‘‘front-end’’ combined algorithms; and 3) to demonstrate that PMW algorithms generate acceptable instantaneous rain estimates. It is found that the bias uncertainty of many current PMW algorithms is on the order of 630%. This level is below that of the radar and rain gauge data specially collected for the study, so that it is not possible to objectively select a best algorithm based on the ground data validation approach. By decomposing the intercomparisons into effects due to rain detection (screening) and effects due to brightness temperature‐rain rate conversion, differences among the algorithms are partitioned by rain area and rain intensity. For ocean, the screening differences mainly affect the light rain rates, which do not contribute significantly to area-averaged rain rates. The major sources of differences in mean rain rates between individual algorithms stem from differences in how intense rain rates are calculated and the maximum rain rate allowed by a given algorithm. The general method of solution is not necessarily the determining factor in creating systematic rain-rate differences among groups of algorithms, as we find that the severity of the screen is the dominant factor in producing systematic group differences among land algorithms, while the input channel selection is the dominant factor in producing systematic group differences among ocean algorithms. The significance of these issues are examined through what is called ‘‘fan map’’ analysis. The paper concludes with a discussion on the role of intercomparison projects in seeking improvements to algorithms, and a suggestion on why moving beyond the ‘‘ground truth’’ validation approach by use of a calibration-quality forward model would be a step forward in seeking objective evaluation of individual algorithm performance and optimal algorithm design.
Bulletin of the American Meteorological Society | 1986
Thomas T. Wilheit
Abstract It is argued that because microwave radiation interacts much more strongly with hydrometeors than with cloud particles, microwave measurements from space offer a significant chance of making global precipitation estimates. Over oceans, passive microwave measurements are essentially attenuation measurements that can be very closely related to the rain rate independently of the details of the drop-size distribution. Over land, scattering of microwave radiation by the hydrometeors, especially in the ice phase, can be used to estimate rainfall. In scattering, the details of the drop-size distribution are very important and it is therefore more difficult to achieve a high degree of accuracy. The SSM/I (Special Sensor Microwave Imager), a passive microwave imaging sensor that will be launched soon, will have dual-polarized channels at 85.5 GHz that will be very sensitive to scattering by frozen hydrometeors. Other sensors being considered for the future space missions would extend our ability to estima...
IEEE Transactions on Geoscience and Remote Sensing | 2003
Thomas T. Wilheit; Christian D. Kummerow; Ralph Ferraro
Three related algorithms have been developed to retrieve rainfall from the Advanced Microwave Scanning Radiometer-Earth Observing System observations. First, land and ocean backgrounds must be treated separately. The highly reflective ocean background is ideal for observing atmospheric constituents including rainfall. The high and variable emissivity of the land background limits the usefulness of the signal from the liquid hydrometeors under most conditions. For an algorithm with global applicability, it is more reasonable to use the signal generated by scattering of microwaves from frozen hydrometeors. Unfortunately, this scattering is related to rainfall only indirectly. This dichotomy is reinforced by the differing availability of ground truth in the two environments. Thus, two distinct approaches must be used in generating the algorithms for the two cases. The oceanic algorithm is based on physical models, and the land algorithm is generated empirically. Functionally, the two algorithms are merged into a common structure for retrievals on a pixel-by-pixel (Level-2) basis, but the distinct philosophies remain. The third element is the monthly total product (Level-3) which could be generated by simply summing the Level-2 products. However, subtle biases, unimportant on a Level-2 basis, could introduce serious errors into the totals. Therefore, we have chosen to generate a separate product over the oceans consisting of monthly averaged rain rates over 5/spl deg/ /spl times/5/spl deg/ boxes. The Level-3 ocean algorithm assumes that the rainfall intensity is distributed log-normally and also absorbs small instrumental calibration errors and some modeling errors.
Remote Sensing Reviews | 1994
Thomas T. Wilheit; Robert F. Adler; Susan K. Avery; Eric C. Barrett; Peter Bauer; W. Berg; Alfred T. C. Chang; J. Ferriday; Norman C. Grody; S. Goodman; C Kidd; Dominic Kniveton; Christian D. Kummerow; Alberto Mugnai; W. Olson; Grant W. Petty; Akira Shibata; Eric A. Smith
The retrieval of rainfall intensity from radiances measured by spaceborne microwave radiometers can be understood in terms of well established physics. At frequencies below about 40 GHz over an ocean background the relationship between the rainfall and the observations is particularly well understood. In this part of the spectrum, the radiances are principally determined by the liquid hydrometeors with only a modest amount of ambiguity. In very intense convection, ice aloft may increase this ambiguity somewhat. At high frequencies, such as the 85.5 GHz channel of the SSM/I, scattering by the frozen hydrometeors becomes more significant and quantitative rainfall retrieval becomes more problematic. In spite of the ambiguities, the use of the higher frequencies is desirable on a number of counts including: applicability over land, spatial resolution and dynamic range. A total of 16 algorithms were submitted for the PIP‐1. These include algorithms that are based on high frequency (scattering) measurements and low frequency (emission) measurements with a few combinations and variations on these themes. The calibration of the algorithms varies from mostly empirical to essentially first principles with most falling somewhere in‐between. All of the algorithms retrieved rainfall and one also retrieved a profile of the liquid and frozen hydrometeors.
Journal of Applied Meteorology | 2005
Sandra E. Yuter; Robert A. Houze; Eric A. Smith; Thomas T. Wilheit; Edward J. Zipser
The Tropical Rainfall Measuring Mission (TRMM) Kwajalein Experiment (KWAJEX) was designed to obtain an empirical physical characterization of precipitating convective clouds over the tropical ocean. Coordinated datasets were collected by three aircraft, one ship, five upper-air sounding sites, and a variety of continuously recording remote and in situ surface-based sensors, including scanning Doppler radars, profilers, disdrometers, and rain gauges. This paper describes the physical characterization of the Kwajalein cloud population that has emerged from analyses of datasets that were obtained during KWAJEX and combined with long-term TRMM ground validation site observations encompassing three rainy seasons. The spatial and temporal dimensions of the precipitation entities exhibit a lognormal probability distribution, as has been observed over other parts of the tropical ocean. The diurnal cycle of the convection is also generally similar to that seen over other tropical oceans. The largest precipitating cloud elements—those with rain areas exceeding 14 000 km 2 —have the most pronounced diurnal cycle, with a maximum frequency of occurrence before dawn; the smallest rain areas are most frequent in the afternoon. The large systems exhibited stratiform rain areas juxtaposed with convective regions. Frequency distributions of dual-Doppler radar data showed narrow versus broad spectra of divergence in the stratiform and convective regions, respectively, as expected because strong up- and downdrafts are absent in the stratiform regions. The dual-Doppler profiles consistently showed low-level convergence and upper-level divergence in convective regions and midlevel convergence sandwiched between lower- and upper-level divergence in stratiform regions. However, the magnitudes of divergence are sensitive to assumptions made in classifying the radar echoes as convective or stratiform. This sensitivity implies that heating profiles derived from satellite radar data will be sensitive to the details of the scheme used to separate convective and stratiform rain areas. Comparison of airborne passive microwave data with ground-based radar data indicates that the pattern of scattering of 85-GHz radiance by ice particles in the upper portions of KWAJEX precipitating clouds is poorly correlated with the precipitation pattern at lower levels while the emission channels (10 and 19 GHz) have brightness temperature patterns that closely correspond to the lower-level precipitation structure. In situ ice particle imagery obtained by aircraft at upper levels (11 km) shows that the concentrations of ice particles of all densities are greater in the upper portions of active convective rain regions and lower in the upper portions of stratiform regions, probably because the active updrafts convey the particles to upper levels, whereas in the stratiform regions sedimentation removes the larger ice particles over time. Low-level aircraft flying in the rain layer show similar total drop concentrations in and out of convective cells, but they also show a sudden jump in the concentration of larger raindrops at the boundaries of the cells, indicating a discontinuity in growth processes such as coalescence at the cell boundary.
Bulletin of the American Meteorological Society | 2017
Gail Skofronick-Jackson; Walter A. Petersen; Wesley Berg; Chris Kidd; Erich Franz Stocker; Dalia Kirschbaum; Ramesh K. Kakar; Scott A. Braun; George J. Huffman; Toshio Iguchi; Pierre Kirstetter; Christian D. Kummerow; Robert Meneghini; Riko Oki; William S. Olson; Yukari N. Takayabu; Kinji Furukawa; Thomas T. Wilheit
The GPM mission collects essential rain and snow data for scientific studies and societal benefit.
international geoscience and remote sensing symposium | 2009
Kaushik Gopalan; W.L. Jones; S. Biswas; S. Bilanow; Thomas T. Wilheit; Takis Kasparis
Recent intersatellite radiometric comparisons of the Tropical Rainfall Measurement Mission Microwave Imager (TMI) with polar orbiting satellite radiometer data and modeled clear-sky radiances have uncovered a time-variable radiometric bias in the TMI brightness temperatures. The bias is consistent with a source that generally cools during orbit night and warms during sunlight exposure. The likely primary source has been identified as a slightly emissive parabolic antenna reflector. This paper presents an empirical brightness temperature correction to TMI based on the position around each orbit and the Sun elevation above the orbit plane. The results of radiometric intercomparisons with WindSat and special sensor microwave imager are presented, which demonstrate the effectiveness of the recommended correction approach based on four years of data.