Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thomas Thurnheer is active.

Publication


Featured researches published by Thomas Thurnheer.


PLOS ONE | 2010

Oral Biofilm Architecture on Natural Teeth

Vincent Zijnge; M. Barbara M. van Leeuwen; John E. Degener; Frank Abbas; Thomas Thurnheer; Rudolf Gmür; Hermie J. M. Harmsen

Periodontitis and caries are infectious diseases of the oral cavity in which oral biofilms play a causative role. Moreover, oral biofilms are widely studied as model systems for bacterial adhesion, biofilm development, and biofilm resistance to antibiotics, due to their widespread presence and accessibility. Despite descriptions of initial plaque formation on the tooth surface, studies on mature plaque and plaque structure below the gum are limited to landmark studies from the 1970s, without appreciating the breadth of microbial diversity in the plaque. We used fluorescent in situ hybridization to localize in vivo the most abundant species from different phyla and species associated with periodontitis on seven embedded teeth obtained from four different subjects. The data showed convincingly the dominance of Actinomyces sp., Tannerella forsythia, Fusobacterium nucleatum, Spirochaetes, and Synergistetes in subgingival plaque. The latter proved to be new with a possibly important role in host-pathogen interaction due to its localization in close proximity to immune cells. The present study identified for the first time in vivo that Lactobacillus sp. are the central cells of bacterial aggregates in subgingival plaque, and that Streptococcus sp. and the yeast Candida albicans form corncob structures in supragingival plaque. Finally, periodontal pathogens colonize already formed biofilms and form microcolonies therein. These in vivo observations on oral biofilms provide a clear vision on biofilm architecture and the spatial distribution of predominant species.


Applied and Environmental Microbiology | 2003

Mass Transport of Macromolecules within an In Vitro Model of Supragingival Plaque

Thomas Thurnheer; Rudolf Gmür; Stuart Shapiro; Bernhard Guggenheim

ABSTRACT The aim of this study was to examine the diffusion of macromolecules through an in vitro biofilm model of supragingival plaque. Polyspecies biofilms containing Actinomyces naeslundii, Fusobacterium nucleatum, Streptococcus oralis, Streptococcus sobrinus, Veillonella dispar, and Candida albicans were formed on sintered hydroxyapatite disks and then incubated at room temperature for defined periods with fluorescent markers with molecular weights ranging from 3,000 to 900,000. Subsequent examination by confocal laser scanning microscopy revealed that the mean square penetration depths for all tested macromolecules except immunoglobulin M increased linearly with time, diffusion coefficients being linearly proportional to the cube roots of the molecular weights of the probes (range, 10,000 to 240,000). Compared to diffusion in bulk water, diffusion in the biofilms was markedly slower. The rate of diffusion for each probe appeared to be constant and not a function of biofilm depth. Analysis of diffusion phenomena through the biofilms suggested tortuosity as the most probable explanation for retarded diffusion. Selective binding of probes to receptors present in the biofilms could not explain the observed extent of retardation of diffusion. These results are relevant to oral health, as selective attenuated diffusion of fermentable carbohydrates and acids produced within dental plaque is thought to be essential for the development of carious lesions.


Microbiology | 1986

Orthanilic Acid and Analogues as Carbon Sources for Bacteria: Growth Physiology and Enzymic Desulphonation

Thomas Thurnheer; Thilo KöUHLER; Alasdair M. Cook; Thomas Leisinger

Summary: Carbon-limited aerobic batch enrichment cultures were grown and 17 bacteria able to degrade orthanilic acid (2-aminobenzenesulphonic acid), sulphanilic acid, sulphonamide, 4-sulphobenzoic acid, and benzene-, toluene- and phenolsulphonic acids were isolated. The organisms could each use one to three of the substances. Strain O-1, a Pseudomonas sp., which utilized three of these compounds, was studied in detail. A complete mass balance was obtained for the growth of the organism in medium containing, for example, orthanilic acid, and a specific growth rate of 0·1 h-1 was observed. Cell extracts desulphonated six aromatic sulphonates. The enzyme(s) was soluble and was not synthesized in succinate-grown cells. Enzyme activity [about 40 μkat (kg protein)-1] was dependent on the presence of catalytic amounts of NAD(P)H.


Caries Research | 2004

Application of the Zürich biofilm model to problems of cariology.

Bernhard Guggenheim; Merlin Guggenheim; Rudolf Gmür; E. Giertsen; Thomas Thurnheer

The term biofilm is increasingly replacing ‘plaque’ in the literature, but concepts and existing paradigms are changing much more slowly. There is little doubt that biofilm research will lead to more realistic perception and interpretation of the physiology and pathogenicity of microorganisms colonizing plaques in the oral cavity. There is clear evidence that the genotypic and phenotypic expression profiles of biofilm and planktonic bacteria are different. Several techniques are available today to study multispecies biofilms of oral bacteria, each having its particular advantages and weaknesses. We describe a biofilm model developed in Zürich and demonstrate a number of applications with direct or indirect impact on prophylactic dentistry: spatial arrangement and associative behavior of various species in biofilms; multiplex fluorescent in situ hybridization analysis of oral bacteria in biofilms; use of the biofilm model to predict in vivo efficacy of antimicrobials reliably; mass transport in biofilms; de- and remineralization of enamel exposed to biofilms in vitro. The potential of biofilm experimentation in oral biology has certainly not yet been fully exploited and dozens of possible interesting applications could be investigated. The overall physiological parameters of multispecies biofilms can be measured quite accurately, but it is still impossible to assess in toto the multitude of interactions taking place in such complex systems. What can and should be done is to test hypotheses stemming from experiments with planktonic cells in monospecies cultures. In particular, it will be interesting to investigate the relevance to biofilm composition and metabolism of specific gene products by using appropriate bacterial mutants.


Journal of Microbiological Methods | 2001

Automated fluorescent in situ hybridization for the specific detection and quantification of oral streptococci in dental plaque

Thomas Thurnheer; Rudolf Gmür; E. Giertsen; Bernhard Guggenheim

Our aim was to develop a rapid fluorescent in situ hybridization (FISH) assay for the identification of different oral groups of streptococci in dental plaque and to combine it with digital image analysis for the automated enumeration of target cells. Cy3-labeled oligonucleotide probes specific for 16S rRNA gene sequences of the anginosus, mitis, mutans, and salivarius groups of streptococci were hybridized under stringent conditions with bacterial cultures or supragingival plaque samples that had been permeabilized with lysozyme. Probe specificity was determined with strains from 30 different species, mainly of oral origin. Results showed that probes ANG541, MIT447, SSP001, and SAL090 with specificity for the anginosus, mitis, mutans, and salivarius groups, respectively, the pan-reactive streptococcal probe STR405, the S. mutans specific probe MUT590, and the S. sobrinus specific probe SOB174 were well-suited for the identification of cultured streptococci. Probes STR405, MIT447 and SSP001 were then successfully applied to enumerate automatically bacteria of the recognized taxa in 144 supragingival plaque samples. On the average, total streptococci accounted for 8.2%, streptococci of the mitis and mutans groups for 3.9 and 1.7%, respectively, of the plaques. The combined application of FISH and automated image analysis provides an objective time-saving alternative to culture or PCR for the enumeration of selected oral streptococci in dental plaque.


Caries Research | 2011

Dental caries in rats associated with Candida albicans.

Thomas Klinke; Bernhard Guggenheim; Wolfgang Klimm; Thomas Thurnheer

In addition to occasional opportunistic colonization of the oral mucosa, Candida albicans is frequently found in carious dentin. The yeast’s potential to induce dental caries as a consequence of its pronounced ability to produce and tolerate acids was investigated. Eighty caries-active Osborne-Mendel rats were raised on an ampicillin-supplemented diet and exposed to C. albicans and/or Streptococcus mutans, except for controls. Throughout the 28-day test period, the animals were offered the modified cariogenic diet 2000a, containing 40% various sugars. Subsequently, maxillary molars were scored for plaque extent. After dissection, the mandibular molars were evaluated for smooth surface and fissure caries. Test animals exposed to C. albicans displayed considerably more advanced fissure lesions (p < 0.001) than non-exposed controls. While S. mutans yielded similar results, a combined association of C. albicans and S. mutans had no effect on occlusal caries incidence. Substituting dietary sucrose by glucose did not modify caries induction by C. albicans. However, animals fed a diet containing 20% of both sugars showed no differences to non-infected controls. Smooth surface caries was not generated by the yeast. This study provides experimental evidence that C. albicans is capable of causing occlusal caries in rats at a high rate.


Caries Research | 2006

Effects of Streptococcus mutans gtfC deficiency on mixed oral biofilms in vitro.

Thomas Thurnheer; J.R. van der Ploeg; E. Giertsen; Bernhard Guggenheim

The aim of this study was to examine the influence of glucosyltransferase-gene-negative (gtf –) Streptococcus mutans strains unable to synthesize water-insoluble or soluble glucan on the structure and macromolecular diffusion properties of in vitro grown mixed oral biofilms. Biofilms modeling supragingival plaque consisted of Actinomyces naeslundii OMZ 745, Candida albicans OMZ 110, Fusobacterium nucleatum KP-F2, Streptococcus oralis SK 248, Veillonella dispar ATCC 17748T and one of the S. mutans strains UA159, OMZ 966, OMZ 937 or OMZ 977. Biofilms were grown anaerobically on sintered hydroxyapatite disks for 64.5 h at 37°C. To perform confocal laser scanning microscopy analyses, microorganisms were stained with Syto 13 and extracellular polysaccharides (EPS) with Calcofluor. Macromolecular diffusion properties were measured following timed biofilm exposure to Texas-Red-labeled 70-kDa dextran. Results showed that replacing wild-type S. mutans by a gtfC – mutant led to an increase in the volume fraction occupied by cells from 29 to 48% and a decrease of the EPS volume fraction from 51 to 33%. No such changes were observed when the S. mutans wild-type strain was replaced by a gtfB – or gtfD – mutant. The diffusion coefficient of 70-kDa dextran in biofilms containing the gtfC – S. mutans was 16-fold higher than in biofilms with the wild-type strain indicating a strong macromolecular sieving effect of GTF C-generated glucans. Our data demonstrate the influence of EPS on the structure and macromolecular diffusion properties of an oral biofilm model and uncover our still limited knowledge of the function of EPS in biofilms and plaque.


BMC Microbiology | 2014

Role of Porphyromonas gingivalis gingipains in multi-species biofilm formation.

Kai Bao; Georgios N. Belibasakis; Thomas Thurnheer; Joseph Aduse-Opoku; Michael A. Curtis; Nagihan Bostanci

BackgroundPeriodontal diseases are polymicrobial diseases that cause the inflammatory destruction of the tooth-supporting (periodontal) tissues. Their initiation is attributed to the formation of subgingival biofilms that stimulate a cascade of chronic inflammatory reactions by the affected tissue. The Gram-negative anaerobes Porphyromonas gingivalis, Tannerella forsythia and Treponema denticola are commonly found as part of the microbiota of subgingival biofilms, and they are associated with the occurrence and severity of the disease. P. gingivalis expresses several virulence factors that may support its survival, regulate its communication with other species in the biofilm, or modulate the inflammatory response of the colonized host tissue. The most prominent of these virulence factors are the gingipains, which are a set of cysteine proteinases (either Arg-specific or Lys-specific). The role of gingipains in the biofilm-forming capacity of P. gingivalis is barely investigated. Hence, this in vitro study employed a biofilm model consisting of 10 subgingival bacterial species, incorporating either a wild-type P. gingivalis strain or its derivative Lys-gingipain and Arg-gingipan isogenic mutants, in order to evaluate quantitative and qualitative changes in biofilm composition.ResultsFollowing 64h of biofilm growth, the levels of all 10 species were quantified by fluorescence in situ hybridization or immunofluorescence. The wild-type and the two gingipain-deficient P. gingivalis strains exhibited similar growth in their corresponding biofilms. Among the remaining nine species, only the numbers of T. forsythia were significantly reduced, and only when the Lys-gingipain mutant was present in the biofilm. When evaluating the structure of the biofilm by confocal laser scanning microscopy, the most prominent observation was a shift in the spatial arrangement of T. denticola, in the presence of P. gingivalis Arg-gingipain mutant.ConclusionsThe gingipains of P. gingivalis may qualitatively and quantitatively affect composition of polymicrobial biofilms. The present experimental model reveals interdependency between the gingipains of P. gingivalis and T. forsythia or T. denticola.


Microbiology | 2002

Direct quantitative differentiation between Prevotella intermedia and Prevotella nigrescens in clinical specimens

Rudolf Gmür; Thomas Thurnheer

This paper describes a quantitative fluorescent in situ hybridization (FISH) assay for the differential identification of Prevotella intermedia and Prevotella nigrescens in clinical samples, and compares its performance with less discriminatory culture and quantitative immunofluorescence (IF) assays. Fluorescence-labelled oligonucleotide probes directed to specific 16S rRNA sequences of P. intermedia, P. nigrescens, Prevotella pallens and Prevotella denticola were hybridized under stringent conditions with cultured reference strains or plaque samples from deep periodontal pockets. Probe specificity was defined with strains from multiple oral Prevotella species. The lower detection level of the assays was approximately 3x10(3) target cells per ml of plaque-sample suspension. P. intermedia, P. nigrescens, P. pallens and P. denticola were detected in plaques with prevalences of 69, 67, 0 and 28%, respectively. On average, 3.9 x 10(6) P. intermedia, 3.1 x 10(6) P. nigrescens and 5.6 x 10(5) P. denticola cells were counted per positive sample. All three species were found almost exclusively in dense mixed aggregates. Quantitative FISH data agreed satisfactorily with corresponding IF data (r=0.711). Both FISH and IF enumerations of the sum of P. intermedia and P. nigrescens markedly exceeded the c.f.u. counts of black-pigmented colonies in Porphyromonas gingivalis-free cultured subgingival plaques. The results demonstrate the validity of this new assay. Unlike established IF, culture, PCR or checkerboard DNA hybridization assays, this FISH assay differentiates quantitatively between P. intermedia and P. nigrescens, provides visual accuracy control, and offers insights into the spatial distribution of the target cells within a clinical sample.


Journal of Dental Research | 1999

Dominant Cross-reactive Antibodies Generated during the Response to a Variety of Oral Bacterial Species Detect Phosphorylcholine

Rudolf Gmür; Thomas Thurnheer; Bernhard Guggenheim

The intraperitoneal immunization of Balb/c mice with subgingival plaque from advanced periodontal pockets or with certain strains of Actinobacillus actinomycetemcomitans, Fusobacterium nucleatum, Actinomyces israelii, Streptococcus mitis, or Streptococcus oralis yielded frequently indistinguishable IgM monoclonal antibodies which were reactive with antigens from a variety of oral bacteria. This study aimed to characterize the specificity of such monoclonal antibodies and the diversity of oral bacteria expressing this target antigen or epitope. Using a competitive enzyme-linked immunosorbent assay to study a variety of competitor substances for their capacity to bind to the monoclonal antibodies, we identified phosphorylcholine as the recognized epitope. The concentration of positive bacteria with extraordinarily bright cell wall fluorescence in indirect immunofluorescence assays varied between 0.1% and 15% in subgingival and from 10 to 40% in supragingival plaque samples. Labeled bacteria belonged to different morphotypes, including cocci, rods, and filaments. Of 75 species tested in vitro, 14 Gram-positive and four Gram-negative species were found to harbor positive strains. Haemophilus aphrophilus, Streptococcus mitis, Actinomyces georgiae, Actinomyces gerencseriae, Actinomyces israelii, and Actinomyces odontolyticus were human oral species of which all tested strains were capable of binding the cross-reactive monoclonal antibodies. In contrast, Actinomyces naeslundii was consistently negative. These data provide evidence for a much more common expression of phosphorylcholine by oral bacteria than hitherto believed but do not indicate an obvious association of phosphorylcholine expression with oral health or inflammatory periodontal diseases.

Collaboration


Dive into the Thomas Thurnheer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge