Thomas Tromholt
Technical University of Denmark
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Thomas Tromholt.
Advanced Materials | 2012
Mikkel Jørgensen; Kion Norrman; Suren A. Gevorgyan; Thomas Tromholt; Birgitta Andreasen; Frederik C. Krebs
Organic photovoltaics (OPVs) evolve in an exponential manner in the two key areas of efficiency and stability. The power conversion efficiency (PCE) has in the last decade been increased by almost a factor of ten approaching 10%. A main concern has been the stability that was previously measured in minutes, but can now, in favorable circumstances, exceed many thousands of hours. This astonishing achievement is the subject of this article, which reviews the developments in stability/degradation of OPVs in the last five years. This progress has been gained by several developments, such as inverted device structures of the bulk heterojunction geometry device, which allows for more stable metal electrodes, the choice of more photostable active materials, the introduction of interfacial layers, and roll-to-roll fabrication, which promises fast and cheap production methods while creating its own challenges in terms of stability.
Nanoscale | 2010
Frederik C. Krebs; Thomas Tromholt; Mikkel Jørgensen
Upscaling of the manufacture of polymer solar cells is detailed with emphasis on cost analysis and practical approach. The device modules were prepared using both slot-die coating and screen printing the active layers in the form of stripes that were serially connected. The stripe width was varied and the resultant performance analysed. Wider stripes give access to higher geometric fill factors and lower aperture loss while they also present larger sheet resistive losses. An optimum was found through preparation of serially connected stripes having widths of 9, 13 and 18 mm with nominal geometric fill factors (excluding bus bars) of 50, 67 and 75% respectively. In addition modules with lengths of 6, 10, 20, 22.5 and 25 cm were explored. The devices were prepared by full roll-to-roll solution processing in a web width of 305 mm and roll lengths of up to 200 m. The devices were encapsulated with a barrier material in a full roll-to-roll process using standard adhesives giving the devices excellent stability during storage and operation. The total area of processed polymer solar cell was around 60 m2 per run. The solar cells were characterised using a roll-to-roll system comprising a solar simulator and an IV-curve tracer. After characterisation the solar cell modules were cut into sheets using a sheeting machine and contacted using button contacts applied by crimping. Based on this a detailed cost analysis was made showing that it is possible to prepare complete and contacted polymer solar cell modules on this scale at an area cost of 89 euro m(-2) and an electricity cost of 8.1 euro Wp(-1). The cost analysis was separated into the manufacturing cost, materials cost and also the capital investment required for setting up a complete production plant on this scale. Even though the cost in euro Wp(-1) is comparable to the cost for electricity using existing technologies the levelized cost of electricity (LCOE) is expected to be significantly higher than the existing technologies due to the inferior operational lifetime. The presented devices are thus competitive for consumer electronics but ill-suited for on-grid electricity production in their current form.
Journal of Materials Chemistry | 2012
Thomas Tromholt; Morten Vesterager Madsen; Jon Eggert Carlé; Martin Helgesen; Frederik C. Krebs
Photochemical degradation at 1 sun under AM1.5G illumination was performed on six conjugated polymers and five different electron acceptors. Additionally, the respective polymer:PC60BM and P3HT:electron acceptor blends were studied, and all degradations were resolved in terms of film thickness and absorbance. A fully automated degradation setup allowed for inclusion of in excess of 1000 degradations in this study to enable a discussion of reliability of the technique. Degradation rates were found to increase exponentially with decreasing film absorbance for all materials. The relative stabilities within each material group were found to vary for both the pure polymers and the blends. The stability ranking between the materials of the pure polymers was found to be similar to the ranking for their respective blends, implying that the photochemical stability of a pure polymer is a good measure of its associated blend stability. Different electron acceptors were found to stabilize P3HT decreasingly with decreasing donor–acceptor LUMO–LUMO gap. Destabilization of P3HT was observed in the case of the electron acceptor ICBA. Additionally, the decreased stabilization of P3HT by high LUMO electron acceptors poses a challenge to solar cell encapsulation if these materials are to be of commercial interest. The presented method is generally applicable to all types of organic materials to assess photochemical stabilities. The presented results of conjugated polymers demonstrate that this is a powerful tool for conjugated polymer stability assessment if the results are interpreted correctly.
Applied Physics Letters | 2010
Thomas Tromholt; Eugene A. Katz; Baruch Hirsch; Alexis Vossier; Frederik C. Krebs
We report the effects of concentrated sunlight on key photovoltaic parameters and stability of organic photovoltaics (OPV). Sunlight collected and concentrated outdoors was focused into an optical fiber and delivered onto a 1 cm2 bulk-heterojunction cell. Sunlight concentration C was varied gradually from 0.2 to 27 suns. Power conversion efficiency exhibited slow increase with C that was followed by saturation around 2% at C=0.5–2.5 suns and subsequent strong reduction. Possible OPV applications in stationary solar concentrators (C≤2 suns) are discussed. Finally, experiments at C=55–58 suns demonstrated potential of our approach for accelerated studies of light induced mechanisms in the OPV degradation.
Journal of Applied Physics | 2011
Assaf Manor; Eugene A. Katz; Thomas Tromholt; Baruch Hirsch; Frederik C. Krebs
It is widely accepted that efficiency of organic solar cells could be limited by their size. However, the published data on this effect are very limited and none of them includes analysis of light intensity dependence of the key cell parameters. We report such analysis for bulk heterojunction solar cells of various sizes and suggest that the origin of both the size and the light intensity effects should include underlying physical mechanisms other than conventional series resistance dissipation. In particular, we conclude that the distributed nature of the ITO resistance and its influence on the voltage dependence of photocurrent and dark current is the key to understanding size limitation of the organic photovoltaics (OPV) efficiency. Practical methods to overcome this limitation as well as the possibility of producing concentrator OPV cells operating under sunlight concentrations higher than 10 suns are discussed.
ACS Applied Materials & Interfaces | 2009
Thomas Tromholt; Suren A. Gevorgyan; Mikkel Jørgensen; Frederik C. Krebs; Kristian O. Sylvester-Hvid
The search for polymer solar cells giving a high open circuit voltage was conducted through a comparative study of four types of bulk-heterojunction solar cells employing different photoactive layers. As electron donors the thermo-cleavable polymer poly-(3-(2-methylhexyloxycarbonyl)dithiophene) (P3MHOCT) and unsubstituted polythiophene (PT) were used, the latter of which results from thermo cleaving the former at 310 degrees C. As reference, P3HT solar cells were built in parallel. As electron acceptors, either PCBM or bis-[60]PCBM were used. In excess of 300 solar cells were produced under as identical conditions as possible, varying only the material combination of the photo active layer. It was observed that on replacing PCBM with bis[60]PCBM, the open circuit voltage on average increased by 100 mV for P3MHOCT and 200 mV for PT solar cells. Open circuit voltages approaching 1 V were observed for the PT:bis[60]PCBM solar cells and a maximum conversion efficiency of 1.3% was obtained for solar cells with P3MHOCT:PCBM as the photoactive material. For the reference solar cells maximum efficiencies of 2.1 and 2.4% were achieved for P3HT:PCBM and P3HT:bis[60]PCBM, respectively. Despite special measures taken in terms of substrate design and device processing, a substantial spread in the photovoltaic properties was generally observed. This spread could not be correlated with the optical properties of the solar cells, the thickness of the photo active layer or the electrode deposition conditions of the aluminum top electrode.
Journal of Materials Chemistry | 2012
Jon Eggert Carlé; Birgitta Andreasen; Thomas Tromholt; Morten Vesterager Madsen; Kion Norrman; Mikkel Jørgensen; Frederik C. Krebs
We are here presenting a comparative study between four different types of functionalities for cross-linking. With relatively simple means bromine, azide, vinyl and oxetane could be incorporated into the side chains of the low band-gap polymer TQ1. Cross-linking of the polymers was achieved by UV-light illumination to give solvent resistant films and reduced phase separation and growth of PCBM crystallites in polymer:PCBM films. The stability of solar cells based on the cross-linked polymers was tested under various conditions. This study showed that cross-linking can improve morphological stability but that it has little influence on the photochemical stability which is also decisive for stable device operation under constant illumination conditions.
Nanotechnology | 2011
Thomas Tromholt; Assaf Manor; Eugene A. Katz; Frederik C. Krebs
Concentrated sunlight was used to study the performance response of inverted P3HT:PCBM organic solar cells after exposure to high intensity sunlight. Correlations of efficiency as a function of solar intensity were established in the range of 0.5-15 suns at three different stages: for a pristine cell, after 30 min exposure at 5 suns and after 30 min of rest in the dark. High intensity exposure introduced a major performance decrease for all solar intensities, followed by a partial recovery of the lost performance over time: at 1 sun only 6% of the initial performance was conserved after the high intensity exposure, while after rest the performance had recovered to 60% of the initial value. The timescale of the recovery effect was studied by monitoring the cell performance at 1 sun after high intensity exposure. This showed that cell performance was almost completely restored after 180 min. The transient state is believed to be a result of the breakdown of the diode behaviour of the ZnO electron transport layer by O(2) desorption, increasing the hole conductivity. These results imply that accelerated degradation of organic solar cells by concentrated sunlight is not a straightforward process, and care has to be taken to allow for a sound accelerated lifetime assessment based on concentrated sunlight.
Polymer Chemistry | 2011
Martin Helgesen; Morten Vesterager Madsen; Birgitta Andreasen; Thomas Tromholt; Jens Wenzel Andreasen; Frederik C. Krebs
New thermally reactive copolymers based on dithienylthiazolo[5,4-d]thiazole (DTZ) and silolodithiophene (SDT) have been synthesized and explored in bulk heterojunction solar cells as mixtures with [6,6]-phenyl-C61-butyric acid methyl ester (PCBM). In thin films the polymers had optical band gaps in the range of 1.64–1.80 eV. For solubility the polymers have incorporated alkyl groups on the SDT unit and thermally removable ester groups on the DTZ unit that can be eliminated around 200 °C for improved photochemical stability in thin films. The bulkiness of the alkyl chains on the SDT unit proved to be very significant in terms of photovoltaic performance of the polymer:PCBM solar cells. Polymers based on 4,4-dihexyl-4H-silolo[3,2-b:4,5-b′]dithiophene reached power conversion efficiencies (PCEs) up to 1.45% but changing the alkyl groups to more bulky ethylhexyl chains reduced the PCE to 1.17%. More noteworthy is that the photovoltaic performance improves for the polymers based on 4,4-dihexyl-4H-silolo[3,2-b:4,5-b′]dithiophene after the ester groups has been eliminated from the DTZ unit by a thermal treatment around 200 °C. To confirm that elimination of the solubilizing groups improve the long term durability of the materials the photochemical stability was estimated by a novel accelerated degradation method by which the photobleaching of the polymer was followed during degradation at 100 solar intensities. This clearly shows that the pristine polymer films are by far the most unstable under the given conditions emphasizing the unfavorable effect of solubilizing groups on the photochemical stability of conjugated polymers.
Applied Physics Letters | 2013
Thomas Tromholt; Morten Vesterager Madsen; Frederik C. Krebs
One approach to increasing polymer solar cell efficiency is to blend poly-(3-hexyl-thiophene) with poorly electron accepting fullerene derivatives to obtain higher open circuit voltage (Voc). In this letter concentrated light is used to study the electrical properties of cell operation at up to 2000 solar intensities of these photoactive blends. Comparison of solar cells based on five different fullerene derivatives shows that at both short circuit and open circuit conditions, recombination remains unchanged up to 50 suns. Determination of Voc at 2000 suns demonstrated that the same logarithmic Voc evolution is observed from 0.4 to 2000 suns, where a maximum Voc of 1019 mV was obtained.