Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thomas V. O'Halloran is active.

Publication


Featured researches published by Thomas V. O'Halloran.


Journal of Biological Chemistry | 2000

Metallochaperones, an intracellular shuttle service for metal ions

Thomas V. O'Halloran; Valeria C. Culotta

Enzymes that employ transition metals as co-factors are housed in a wide variety of intracellular locations or are exported to the extracellular milieu. A key question then arises: how are specific metal co-factors transported to diverse locations and subsequently sorted into the correct metalloenzymes? The mechanisms by which these tasks are accomplished are just now being unraveled. A new family of soluble metal receptor proteins known as “metallochaperones” is emerging that act in the intracellular trafficking of metal ions. Although transition elements can be quite toxic, these metal receptors are not detoxification proteins; they clearly function in a “chaperonelike” manner, guiding and protecting the metal ion while facilitating appropriate partnerships. Here we will review the most recent advances in our understanding of copper metallochaperones and discuss mechanisms that may be relevant to other essential, yet potentially toxic, metal ions.


Nature Structural & Molecular Biology | 2000

Structural basis for copper transfer by the metallochaperone for the Menkes/Wilson disease proteins.

Amy K. Wernimont; David L. Huffman; Audrey L. Lamb; Thomas V. O'Halloran; Amy C. Rosenzweig

The Hah1 metallochaperone protein is implicated in copper delivery to the Menkes and Wilson disease proteins. Hah1 and the N-termini of its target proteins belong to a family of metal binding domains characterized by a conserved MT/HCXXC sequence motif. The crystal structure of Hah1 has been determined in the presence of Cu(I), Hg(II), and Cd(II). The 1.8 Å resolution structure of CuHah1 reveals a copper ion coordinated by Cys residues from two adjacent Hah1 molecules. The CuHah1 crystal structure is the first of a copper chaperone bound to copper and provides structural support for direct metal ion exchange between conserved MT/HCXXC motifs in two domains. The structures of HgHah1 and CdHah1, determined to 1.75 Å resolution, also reveal metal ion coordination by two MT/HCXXC motifs. An extended hydrogen bonding network, unique to the complex of two Hah1 molecules, stabilizes the metal binding sites and suggests specific roles for several conserved residues. Taken together, the structures provide models for intermediates in metal ion transfer and suggest a detailed molecular mechanism for protein recognition and metal ion exchange between MT/HCXXC containing domains.


The EMBO Journal | 2004

Oxygen‐induced maturation of SOD1: a key role for disulfide formation by the copper chaperone CCS

Yoshiaki Furukawa; Andrew S. Torres; Thomas V. O'Halloran

The antioxidant enzyme Cu,Zn‐superoxide dismutase (SOD1) has the distinction of being one of the most abundant disulfide‐containing protein known in the eukaryotic cytosol; however, neither catalytic nor physiological roles for the conserved disulfide are known. Here we show that the disulfide status of Saccharomyces cerevisiae SOD1 significantly affects the monomer–dimer equilibrium, the interaction with the copper chaperone CCS, and the activity of the enzyme itself. Disulfide formation in SOD1 by O2 is slow but is greatly accelerated by the Cu‐bound form of CCS (Cu‐CCS) in vivo and in vitro even in the presence of excess reductants; once formed, this disulfide is kinetically stable. Biochemical assays reveal that Cu‐CCS facilitates Cys oxidation and disulfide isomerization in the stepwise conversion of the immature form of the enzyme to the active state. The immature form of SOD1 is most susceptible to oxidative insult and to aggregation reminiscent of that observed in amyotrophic lateral sclerosis. Thus Cu‐CCS mediation of correct disulfide formation in SOD1 is important for regulation of enzyme activity and for prevention of misfolding or aggregation.


Journal of Bacteriology | 2000

Identification of a Copper-Responsive Two-Component System on the Chromosome of Escherichia coli K-12

G. P. Munson; D. L. Lam; F. W. Outten; Thomas V. O'Halloran

Using a genetic screen we have identified two chromosomal genes, cusRS (ylcA ybcZ), from Escherichia coli K-12 that encode a two-component, signal transduction system that is responsive to copper ions. This regulatory system is required for copper-induced expression of pcoE, a plasmid-borne gene from the E. coli copper resistance operon pco. The closest homologs of CusR and CusS are plasmid-borne two-component systems that are also involved in metal responsive gene regulation: PcoR and PcoS from the pco operon of E. coli; CopR and CopS from the cop operon, which provides copper resistance to Pseudomonas syringae; and SilR and SilS from the sil locus, which provides silver ion resistance to Salmonella enterica serovar Typhimurium. The genes cusRS are also required for the copper-dependent expression of at least one chromosomal gene, designated cusC (ylcB), which is allelic to the recently identified virulence gene ibeB in E. coli K1. The cus locus may comprise a copper ion efflux system, because the expression of cusC is induced by high concentrations of copper ions. Furthermore, the translation products of cusC and additional downstream genes are homologous to known metal ion antiporters.


Nature Structural & Molecular Biology | 2001

Heterodimeric structure of superoxide dismutase in complex with its metallochaperone.

Audrey L. Lamb; Andrew S. Torres; Thomas V. O'Halloran; Amy C. Rosenzweig

The copper chaperone for superoxide dismutase (CCS) activates the eukaryotic antioxidant enzyme copper, zinc superoxide dismutase (SOD1). The 2.9 Å resolution structure of yeast SOD1 complexed with yeast CCS (yCCS) reveals that SOD1 interacts with its metallochaperone to form a complex comprising one monomer of each protein. The heterodimer interface is remarkably similar to the SOD1 and yCCS homodimer interfaces. Striking conformational rearrangements are observed in both the chaperone and target enzyme upon complex formation, and the functionally essential C-terminal domain of yCCS is well positioned to play a key role in the metal ion transfer mechanism. This domain is linked to SOD1 by an intermolecular disulfide bond that may facilitate or regulate copper delivery.


Journal of Biological Chemistry | 2000

Transcriptional Activation of an Escherichia coli Copper Efflux Regulon by the Chromosomal MerR Homologue, CueR

F. Wayne Outten; Caryn E. Outten; Jeremy Hale; Thomas V. O'Halloran

Because copper ions are both essential cofactors and cytotoxic agents, the net accumulation of this element in a cell must be carefully balanced. Depending upon the cellular copper status, copper ions must either be imported or ejected. CopA, the principal copper efflux ATPase in Escherichia coli, is induced by elevated copper in the medium, but the copper-sensing regulatory factor is unknown. Inspection of the copA promoter reveals signature elements of promoters controlled by metalloregulatory proteins in the MerR family. These same elements are also present upstream of yacK, which encodes a putative multi-copper oxidase. Homologues of YacK are found in copper resistance determinants that facilitate copper efflux. Here we show by targeted gene deletion and promoter fusion assays that both copA andyacK are regulated in a copper-responsive manner by the MerR homologue, ybbI. We have designated ybbIas cueR for the Cu effluxregulator. This represents the first example of a copper-responsive regulon on the E. coli chromosome and further extends the roles of MerR family members in prokaryotic stress response.


Cell | 1989

The MerR heavy metal receptor mediates positive activation in a topologically novel transcription complex

Thomas V. O'Halloran; Betsy Frantz; Myung K. Shin; Diana M. Ralston; Jeffrey G. Wright

Several physical and chemical signals from the extracellular environment are known to be transduced into changes in gene expression through multiple step pathways; however, mechanisms for triggering cellular responses to heavy metal stress have yet to be elucidated. We demonstrate here one such mechanism that employs a single heavy metal receptor protein, MerR, to directly activate transcription of the bacterial mercuric ion resistance operon. The mercuric ion-MerR complex and E. coli RNA polymerase holoenzyme synergistically bind to the metal responsive promoter in an unprecedented spatial relationship to form transcriptionally competent complexes. The activator binds adjacent to and overlaps with the polymerase molecule between the consensus -35 and -10 promoter regions. Our results support a model for transcriptional activation that includes both effector-induced protein-protein interactions and activator-induced alteration in DNA structure.


Journal of Biological Chemistry | 2005

Amyotrophic lateral sclerosis mutations have the greatest destabilizing effect on the apo- and reduced form of SOD1, leading to unfolding and oxidative aggregation

Yoshiaki Furukawa; Thomas V. O'Halloran

Mutant forms of Cu,Zn-superoxide dismutase (SOD1) that cause familial amyotrophic lateral sclerosis (ALS) exhibit toxicity that promotes the death of motor neurons. Proposals for the toxic properties typically involve aberrant catalytic activities or protein aggregation. The striking thermodynamic stability of mature forms of the ALS mutant SOD1 (Tm >70 °C) is not typical of protein aggregation models that involve unfolding. Over 44 states of the polypeptide are possible, depending upon metal occupancy, disulfide status, and oligomeric state; however, it is not clear which forms might be responsible for toxicity. Recently the intramolecular disulfide has been shown to be required for SOD1 activity, leading us to examine these states of several disease-causing SOD1 mutants. We find that ALS mutations have the greatest effect on the most immature form of SOD1, destabilizing the metal-free and disulfide-reduced polypeptide to the point that it is unfolded at physiological temperatures (Tm < 37 °C). We also find that immature states of ALS mutant (but not wild type) proteins readily form oligomers at physiological concentrations. Furthermore, these oligomers are more susceptible to mild oxidative stress, which promotes incorrect disulfide cross-links between conserved cysteines and drives aggregation. Thus it is the earliest disulfide-reduced polypeptides in the SOD1 assembly pathway that are most destabilized with respect to unfolding and oxidative aggregation by ALS-causing mutations.


Structure | 1999

Crystal structure of the Atx1 metallochaperone protein at 1.02 Å resolution

Amy C. Rosenzweig; David L. Huffman; Melody Y. Hou; Amy K. Wernimont; Robert A. Pufahl; Thomas V. O'Halloran

BACKGROUND Metallochaperone proteins function in the trafficking and delivery of essential, yet potentially toxic, metal ions to distinct locations and particular proteins in eukaryotic cells. The Atx1 protein shuttles copper to the transport ATPase Ccc2 in yeast cells. Molecular mechanisms for copper delivery by Atx1 and similar human chaperones have been proposed, but detailed structural characterization is necessary to elucidate how Atx1 binds metal ions and how it might interact with Ccc2 to facilitate metal ion transfer. RESULTS The 1.02 A resolution X-ray structure of the Hg(II) form of Atx1 (HgAtx1) reveals the overall secondary structure, the location of the metal-binding site, the detailed coordination geometry for Hg(II), and specific amino acid residues that may be important in interactions with Ccc2. Metal ion transfer experiments establish that HgAtx1 is a functional model for the Cu(I) form of Atx1 (CuAtx1). The metal-binding loop is flexible, changing conformation to form a disulfide bond in the oxidized apo form, the structure of which has been solved to 1.20 A resolution. CONCLUSIONS The Atx1 structure represents the first structure of a metallochaperone protein, and is one of the largest unknown structures solved by direct methods. The structural features of the metal-binding site support the proposed Atx1 mechanism in which facile metal ion transfer occurs between metal-binding sites of the diffusible copper-donor and membrane-tethered copper-acceptor proteins. The Atx1 structural motif represents a prototypical metal ion trafficking unit that is likely to be employed in a variety of organisms for different metal ions.


Nature Chemical Biology | 2008

A place for thioether chemistry in cellular copper ion recognition and trafficking

Anna V Davis; Thomas V. O'Halloran

Over the last decade, cysteine thiolate ligands have been shown to be critical to the Cu(I) (cuprous) binding chemistry of many cytosolic metallochaperone and metalloregulatory proteins involved in copper physiology. More recently, the thioether group of methionine has begun to emerge as an important Cu(I) ligand for trafficking proteins in more oxidizing cellular environments.

Collaboration


Dive into the Thomas V. O'Halloran's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Haimei Chen

Northwestern University

View shared research outputs
Top Co-Authors

Avatar

Stephen J. Lippard

Massachusetts Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge