Thomas W. Davies
University of Exeter
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Thomas W. Davies.
Biological Reviews | 2013
Kevin J. Gaston; Jonathan Bennie; Thomas W. Davies
The ecological impacts of nighttime light pollution have been a longstanding source of concern, accentuated by realized and projected growth in electrical lighting. As human communities and lighting technologies develop, artificial light increasingly modifies natural light regimes by encroaching on dark refuges in space, in time, and across wavelengths. A wide variety of ecological implications of artificial light have been identified. However, the primary research to date is largely focused on the disruptive influence of nighttime light on higher vertebrates, and while comprehensive reviews have been compiled along taxonomic lines and within specific research domains, the subject is in need of synthesis within a common mechanistic framework. Here we propose such a framework that focuses on the cross‐factoring of the ways in which artificial lighting alters natural light regimes (spatially, temporally, and spectrally), and the ways in which light influences biological systems, particularly the distinction between light as a resource and light as an information source. We review the evidence for each of the combinations of this cross‐factoring. As artificial lighting alters natural patterns of light in space, time and across wavelengths, natural patterns of resource use and information flows may be disrupted, with downstream effects to the structure and function of ecosystems. This review highlights: (i) the potential influence of nighttime lighting at all levels of biological organisation (from cell to ecosystem); (ii) the significant impact that even low levels of nighttime light pollution can have; and (iii) the existence of major research gaps, particularly in terms of the impacts of light at population and ecosystem levels, identification of intensity thresholds, and the spatial extent of impacts in the vicinity of artificial lights.
Journal of Applied Ecology | 2012
Kevin J. Gaston; Thomas W. Davies; Jonathan Bennie
Summary Much concern has been expressed about the ecological consequences of night‐time light pollution. This concern is most often focused on the encroachment of artificial light into previously unlit areas of the night‐time environment, but changes in the spectral composition, duration and spatial pattern of light are also recognized as having ecological effects. Here, we examine the potential consequences for organisms of five management options to reduce night‐time light pollution. These are to (i) prevent areas from being artificially lit; (ii) limit the duration of lighting; (iii) reduce the ‘trespass’ of lighting into areas that are not intended to be lit (including the night sky); (iv) change the intensity of lighting; and (v) change the spectral composition of lighting. Maintaining and increasing natural unlit areas is likely to be the most effective option for reducing the ecological effects of lighting. However, this will often conflict with other social and economic objectives. Decreasing the duration of lighting will reduce energy costs and carbon emissions, but is unlikely to alleviate many impacts on nocturnal and crepuscular animals, as peak times of demand for lighting frequently coincide with those in the activities of these species. Reducing the trespass of lighting will maintain heterogeneity even in otherwise well‐lit areas, providing dark refuges that mobile animals can exploit. Decreasing the intensity of lighting will reduce energy consumption and limit both skyglow and the area impacted by high‐intensity direct light. Shifts towards ‘whiter’ light are likely to increase the potential range of environmental impacts as light is emitted across a broader range of wavelengths. Synthesis and applications. The artificial lightscape will change considerably over coming decades with the drive for more cost‐effective low‐carbon street lighting solutions and growth in the artificially lit area. Developing lighting strategies that minimize adverse ecological impacts while balancing the often conflicting requirements of light for human utility, comfort and safety, aesthetic concerns, energy consumption and carbon emission reduction constitute significant future challenges. However, as both lighting technology and understanding of its ecological effects develop, there is potential to identify adaptive solutions that resolve these conflicts.
Biology Letters | 2012
Thomas W. Davies; Jonathan Bennie; Kevin J. Gaston
Artificial lighting has been used to illuminate the nocturnal environment for centuries and continues to expand with urbanization and economic development. Yet, the potential ecological impact of the resultant light pollution has only recently emerged as a major cause for concern. While investigations have demonstrated that artificial lighting can influence organism behaviour, reproductive success and survivorship, none have addressed whether it is altering the composition of communities. We show, for the first time, that invertebrate community composition is affected by proximity to street lighting independently of the time of day. Five major invertebrate groups contributed to compositional differences, resulting in an increase in the number of predatory and scavenging individuals in brightly lit communities. Our results indicate that street lighting changes the environment at higher levels of biological organization than previously recognized, raising the potential that it can alter the structure and function of ecosystems.
Scientific Reports | 2015
Jonathan Bennie; Thomas W. Davies; James P. Duffy; Richard Inger; Kevin J. Gaston
Since the 1970s nighttime satellite images of the Earth from space have provided a striking illustration of the extent of artificial light. Meanwhile, growing awareness of adverse impacts of artificial light at night on scientific astronomy, human health, ecological processes and aesthetic enjoyment of the night sky has led to recognition of light pollution as a significant global environmental issue. Links between economic activity, population growth and artificial light are well documented in rapidly developing regions. Applying a novel method to analysis of satellite images of European nighttime lights over 15 years, we show that while the continental trend is towards increasing brightness, some economically developed regions show more complex patterns with large areas decreasing in observed brightness over this period. This highlights that opportunities exist to constrain and even reduce the environmental impact of artificial light pollution while delivering cost and energy-saving benefits.
Oecologia | 2014
Kevin J. Gaston; James P. Duffy; Sian Gaston; Jonathan Bennie; Thomas W. Davies
Artificial light at night is profoundly altering natural light cycles, particularly as perceived by many organisms, over extensive areas of the globe. This alteration comprises the introduction of light at night at places and times at which it has not previously occurred, and with different spectral signatures. Given the long geological periods for which light cycles have previously been consistent, this constitutes a novel environmental pressure, and one for which there is evidence for biological effects that span from molecular to community level. Here we provide a synthesis of understanding of the form and extent of this alteration, some of the key consequences for terrestrial and aquatic ecosystems, interactions and synergies with other anthropogenic pressures on the environment, major uncertainties, and future prospects and management options. This constitutes a compelling example of the need for a thoroughly interdisciplinary approach to understanding and managing the impact of one particular anthropogenic pressure. The former requires insights that span molecular biology to ecosystem ecology, and the latter contributions of biologists, policy makers and engineers.
Global Change Biology | 2013
Thomas W. Davies; Jonathan Bennie; Richard Inger; Natalie Hempel de Ibarra; Kevin J. Gaston
Technological developments in municipal lighting are altering the spectral characteristics of artificially lit habitats. Little is yet known of the biological consequences of such changes, although a variety of animal behaviours are dependent on detecting the spectral signature of light reflected from objects. Using previously published wavelengths of peak visual pigment absorbance, we compared how four alternative street lamp technologies affect the visual abilities of 213 species of arachnid, insect, bird, reptile and mammal by producing different wavelength ranges of light to which they are visually sensitive. The proportion of the visually detectable region of the light spectrum emitted by each lamp was compared to provide an indication of how different technologies are likely to facilitate visually guided behaviours such as detecting objects in the environment. Compared to narrow spectrum lamps, broad spectrum technologies enable animals to detect objects that reflect light over more of the spectrum to which they are sensitive and, importantly, create greater disparities in this ability between major taxonomic groups. The introduction of broad spectrum street lamps could therefore alter the balance of species interactions in the artificially lit environment.
Frontiers in Ecology and the Environment | 2014
Thomas W. Davies; James P. Duffy; Jon Bennie; Kevin J. Gaston
Despite centuries of use, artificial light at night has only recently been recognized as a cause for environmental concern. Its global extent and ongoing encroachment into naturally lit ecosystems has sparked scientific interest into the many ways in which it may negatively affect human health, societal attitudes, scientific endeavors, and biological processes. Yet, perhaps because sources of artificial light are largely land based, the potential for artificial light pollution to interfere with the biology of the ocean has not been explored in any detail. There is little information on how light pollution affects those species, behaviors, and interactions that are informed by the intensity, spectra, and periodicity of natural nighttime light in marine ecosystems. Here, we provide an overview of the extent of marine light pollution, discuss how it changes the physical environment, and explore its potential role in shaping marine ecosystems.
Remote Sensing | 2015
Jonathan Bennie; James P. Duffy; Thomas W. Davies; Maria Eugenia Correa-Cano; Kevin J. Gaston
Abstract: The rapid growth in electric light usage across the globe has led to increasing presence of artificial light in natural and semi-natural ecosystems at night. This occurs both due to direct illumination and skyglow - scattered light in the atmosphere. There is increasing concern about the effects of artificial light on biological processes, biodiversity and the functioning of ecosystems. We combine intercalibrated Defense Meteorological Satellite Program’s Operational Linescan System (DMSP/OLS) images of stable night-time lights for the period 1992 to 2012 with a remotely sensed landcover product (GLC2000) to assess recent changes in exposure to artificial light at night in 43 global ecosystem types. We find that Mediterranean-climate ecosystems have experienced the greatest increases in exposure, followed by temperate ecosystems. Boreal, Arctic and montane systems experienced the lowest increases. In tropical and subtropical regions, the greatest increases are in mangroves and subtropical needleleaf and mixed forests, and in arid regions increases are mainly in forest and agricultural areas. The global ecosystems experiencing the greatest increase in exposure to artificial light are already localized and fragmented, and often of particular conservation importance due to high levels of diversity, endemism and rarity. Night time remote sensing can play a key role in identifying the extent to which natural ecosystems are exposed to light pollution.
Journal of Materials Chemistry | 1996
Victoria J. Ingram-Jones; Robert C. T. Slade; Thomas W. Davies; Jennifer C. Southern; S. Salvador
The thermal transformation sequences of boehmite (γ-AlOOH) and two grades of gibbsite [γ-Al(OH)3] upon soak and flash calcination are reported. The techniques used were X-ray diffraction (XRD), differential thermal analysis (DTA), Fourier-transform IR (FTIR) and 27Al magic-angle spinning (MAS) NMR spectroscopies. Boehmite undergoes the dehydroxylation sequence boehmite, γ, δ, θ, α-Al2O3 under both soak and flash calcination. The dehydroxylation sequence of gibbsite, however, depends on the calcination method and the particle size of the feed material. Soak calcination of a fine gibbsite (ca. 0.5 µm) gave the dehydroxylation sequence gibbsite, χ, κ, α-Al2O3; with flash calcination the sequence gibbsite, χ, γ, δ, θ, α-Al2O3 was observed. Soak calcination of coarse gibbsite (ca. 14 µm) gave both the dehydroxylation pathways (a): gibbsite, boehmite, γ, δ, θ, α-Al2O3 and (b): gibbsite, χ, κ, α-Al2O3, and pathway (a) was predominant. Flash-calcined coarse gibbsite experiences a crossover between these routes (χ–γ) without formation of κ-Al2O3. Flash calcines of gibbsite undergo this χ–γ phase change at ca. 800°C.
Scientific Reports | 2013
Thomas W. Davies; Jonathan Bennie; Richard Inger; Kevin J. Gaston
Artificial light is globally one of the most widely distributed forms of anthropogenic pollution. However, while both the nature and ecological effects of direct artificial lighting are increasingly well documented, those of artificial sky glow have received little attention. We investigated how city lights alter natural regimes of lunar sky brightness using a novel ten month time series of measurements recorded across a gradient of increasing light pollution. In the city, artificial lights increased sky brightness to levels six times above those recorded in rural locations, nine and twenty kilometers away. Artificial lighting masked natural monthly and seasonal regimes of lunar sky brightness in the city, and increased the number and annual regime of full moon equivalent hours available to organisms during the night. The changes have potentially profound ecological consequences.