Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thomas W. Greene is active.

Publication


Featured researches published by Thomas W. Greene.


Plant Molecular Biology | 1991

Comparison of the primary sequences of two potato tuber ADP-glucose pyrophosphorylase subunits

Paul A. Nakata; Thomas W. Greene; Joseph M. Anderson; Brian J. Smith-White; Thomas W. Okita; Jack Preiss

Near-full-length cDNA clones to the small and large subunit of the heterotetrameric potato tuber ADP-glucose pyrophosphorylase have been isolated and characterized. The missing amino terminal sequence of the small subunit has also been elucidated from its corresponding genomic clone. Primary sequence comparisons revealed that each potato subunit had less identity to each other than to their homologous subunit from other plants. It also appeared that the smaller subunit is more conserved among the different plants and the larger subunit more divergent. Amino acid comparisons of both potato tuber sequences to theEscherichia coli ADP-glucose pyrophosphorylase sequence revealed conserved regions important for both catalytic and allosteric function of the bacterial enzyme.


Plant Physiology | 2004

Both Subunits of ADP-Glucose Pyrophosphorylase Are Regulatory

Joanna M. Cross; Maureen A. Clancy; Janine R. Shaw; Thomas W. Greene; Robert R. Schmidt; Thomas W. Okita; L. Curtis Hannah

The allosteric enzyme ADP-Glc pyrophosphorylase (AGPase) catalyzes the synthesis of ADP-Glc, a rate-limiting step in starch synthesis. Plant AGPases are heterotetramers, most of which are activated by 3-phosphoglyceric acid (3-PGA) and inhibited by phosphate. The objectives of these studies were to test a hypothesis concerning the relative roles of the two subunits and to identify regions in the subunits important in allosteric regulation. We exploited an Escherichia coli expression system and mosaic AGPases composed of potato (Solanum tuberosum) tuber and maize (Zea mays) endosperm subunit fragments to pursue this objective. Whereas potato and maize subunits have long been separated by speciation and evolution, they are sufficiently similar to form active mosaic enzymes. Potato tuber and maize endosperm AGPases exhibit radically different allosteric properties. Hence, comparing the kinetic properties of the mosaics to those of the maize endosperm and potato tuber AGPases has enabled us to identify regions important in regulation. The data herein conclusively show that both subunits are involved in the allosteric regulation of AGPase. Alterations in the small subunit condition drastically different allosteric properties. In addition, extent of 3-PGA activation and extent of 3-PGA affinity were found to be separate entities, mapping to different regions in both subunits.


Plant Physiology | 2010

The Protein Kinase SnRK2.6 Mediates the Regulation of Sucrose Metabolism and Plant Growth in Arabidopsis

Zhifu Zheng; Xiaoping Xu; Rodney Crosley; Scott A. Greenwalt; Yuejin Sun; Beth Blakeslee; Lizhen Wang; Weiting Ni; Megan S. Sopko; Chenglin Yao; Kerrm Y. Yau; Stephanie Burton; Meibao Zhuang; David McCaskill; Daniel J. Gachotte; Mark A. Thompson; Thomas W. Greene

In higher plants, three subfamilies of sucrose nonfermenting-1 (Snf1)-related protein kinases have evolved. While the Snf1-related protein kinase 1 (SnRK1) subfamily has been shown to share pivotal roles with the orthologous yeast Snf1 and mammalian AMP-activated protein kinase in modulating energy and metabolic homeostasis, the functional significance of the two plant-specific subfamilies SnRK2 and SnRK3 in these critical processes is poorly understood. We show here that SnRK2.6, previously identified as crucial in the control of stomatal aperture by abscisic acid (ABA), has a broad expression pattern and participates in the regulation of plant primary metabolism. Inactivation of this gene reduced oil synthesis in Arabidopsis (Arabidopsis thaliana) seeds, whereas its overexpression increased Suc synthesis and fatty acid desaturation in the leaves. Notably, the metabolic alterations in the SnRK2.6 overexpressors were accompanied by amelioration of those physiological processes that require high levels of carbon and energy input, such as plant growth and seed production. However, the mechanisms underlying these functionalities could not be solely attributed to the role of SnRK2.6 as a positive regulator of ABA signaling, although we demonstrate that this kinase confers ABA hypersensitivity during seedling growth. Collectively, our results suggest that SnRK2.6 mediates hormonal and metabolic regulation of plant growth and development and that, besides the SnRK1 kinases, SnRK2.6 is also implicated in the regulation of metabolic homeostasis in plants.


Planta | 2007

Expression of a modified ADP-glucose pyrophosphorylase large subunit in wheat seeds stimulates photosynthesis and carbon metabolism

Eric D. Smidansky; Fletcher D. Meyer; Beth Blakeslee; Thaddeus Weglarz; Thomas W. Greene; Michael J. Giroux

ADP-glucose pyrophosphorylase (AGP) is the rate-limiting step in seed starch biosynthesis. Expression of an altered maize AGP large subunit (Sh2r6hs) in wheat (Triticum aestivum L.) results in increased AGP activity in developing seed endosperm and seed yield. The yield phenotype involves increases in both seed number and total plant biomass. Here we describe stimulation of photosynthesis by the seed-specific Sh2r6hs transgene. Photosynthetic rates were increased in Sh2r6hs-expressing plants under high light but not low light growth conditions, peaking at roughly 7 days after flowering (DAF). In addition, there were significant increases in levels of fructose, glucose, and sucrose in flag leaves at both 7 and 14 DAF. In seeds, levels of carbon metabolites at 7 and 14 DAF were relatively unchanged but increases in glucose, ADP-glucose, and UDP-glucose were observed in seeds from Sh2r6hs positive plants at maturity. Increased photosynthetic rates relatively early in seed development appear to be key to the Sh2r6hs enhanced yield phenotype as no yield increase or photosynthetic rate changes were found when plants were grown in a suboptimal light environment. These findings demonstrate that stimulation of biochemical events in both source and sink tissues is associated with Sh2r6hs expression.


The Plant Cell | 2012

A shrunken-2 Transgene Increases Maize Yield by Acting in Maternal Tissues to Increase the Frequency of Seed Development

L. Curtis Hannah; Brandon Futch; James W. Bing; Janine R. Shaw; Susan K. Boehlein; Jon D. Stewart; Robert Beiriger; Nikolaos Georgelis; Thomas W. Greene

This work examines the function of a maize heat-stable, less inhibitor–sensitive form of ADP-glucose pyrophosphorylase, which increases maize yield by increasing seed number. This work shows that this increase requires high temperature during early seed development and results from transgene function in maternal tissues to increase the probability that an ovary will produce a seed. The maize (Zea mays) shrunken-2 (Sh2) gene encodes the large subunit of the rate-limiting starch biosynthetic enzyme, ADP-glucose pyrophosphorylase. Expression of a transgenic form of the enzyme with enhanced heat stability and reduced phosphate inhibition increased maize yield up to 64%. The extent of the yield increase is dependent on temperatures during the first 4 d post pollination, and yield is increased if average daily high temperatures exceed 33°C. As found in wheat (Triticum aestivum) and rice (Oryza sativa), this transgene increases maize yield by increasing seed number. This result was surprising, since an entire series of historic observations at the whole-plant, enzyme, gene, and physiological levels pointed to Sh2 playing an important role only in the endosperm. Here, we present several lines of evidence that lead to the conclusion that the Sh2 transgene functions in maternal tissue to increase seed number and, in turn, yield. Furthermore, the transgene does not increase ovary number; rather, it increases the probability that a seed will develop. Surprisingly, the number of fully developed seeds is only ∼50% of the number of ovaries in wild-type maize. This suggests that increasing the frequency of seed development is a feasible agricultural target, especially under conditions of elevated temperatures.


Theoretical and Applied Genetics | 2010

Development of highly polymorphic SNP markers from the complexity reduced portion of maize [Zea mays L.] genome for use in marker-assisted breeding

Jafar Mammadov; Wei Chen; Ruihua Ren; Reetal Pai; Wesley Marchione; Feyruz Yalçin; Hanneke Witsenboer; Thomas W. Greene; Steven A. Thompson; Siva P. Kumpatla

The duplicated and the highly repetitive nature of the maize genome has historically impeded the development of true single nucleotide polymorphism (SNP) markers in this crop. Recent advances in genome complexity reduction methods coupled with sequencing-by-synthesis technologies permit the implementation of efficient genome-wide SNP discovery in maize. In this study, we have applied Complexity Reduction of Polymorphic Sequences technology (Keygene N.V., Wageningen, The Netherlands) for the identification of informative SNPs between two genetically distinct maize inbred lines of North and South American origins. This approach resulted in the discovery of 1,123 putative SNPs representing low and single copy loci. In silico and experimental (Illumina GoldenGate (GG) assay) validation of putative SNPs resulted in mapping of 604 markers, out of which 188 SNPs represented 43 haplotype blocks distributed across all ten chromosomes. We have determined and clearly stated a specific combination of stringent criteria (>0.3 minor allele frequency, >0.8 GenTrainScore and >0.5 Chi_test100 score) necessary for the identification of highly polymorphic and genetically stable SNP markers. Due to these criteria, we identified a subset of 120 high-quality SNP markers to leverage in GG assay-based marker-assisted selection projects. A total of 32 high-quality SNPs represented 21 haplotypes out of 43 identified in this study. The information on the selection criteria of highly polymorphic SNPs in a complex genome such as maize and the public availability of these SNP assays will be of great value for the maize molecular genetics and breeding community.


The Plant Cell | 1998

Maize endosperm ADP-glucose pyrophosphorylase SHRUNKEN2 and BRITTLE2 subunit interactions

Thomas W. Greene; L.C. Hannah

ADP–glucose pyrophosphorylase (AGP) represents a key regulatory step in polysaccharide synthesis in organisms ranging from bacteria to plants. Higher plant AGPs are complex in nature and are heterotetramers consisting of two similar but distinct subunits. How the subunits are assembled into enzymatically active polymers is not yet understood. Here, we address this issue by using naturally occurring null mutants of the Shrunken2 (Sh2) and Brittle2 (Bt2) loci of maize as well as the yeast two-hybrid expression system. In the absence of the maize endosperm large AGP subunit (SH2), the BT2 subunit remains as a monomer in the developing endosperm. In contrast, the SH2 protein, in the absence of BT2, is found in a complex of 100 kD. A direct interaction between SH2 and BT2 was proven when they were both expressed in yeast. Several motifs are essential for SH2:BT2 interaction because truncations removing the N or C terminus of either subunit eliminate SH2:BT2 interactions. Analysis of subunit interaction mutants (sim) also identified motifs essential for protein interactions.


Plant and Cell Physiology | 2009

Control of starch synthesis in cereals: metabolite analysis of transgenic rice expressing an up-regulated cytoplasmic ADP-glucose pyrophosphorylase in developing seeds.

Yasuko Nagai; Chotipa Sakulsingharoj; Gerald E. Edwards; Hikaru Satoh; Thomas W. Greene; Beth Blakeslee; Thomas W. Okita

We had previously demonstrated that expression of a cytoplasmic-localized ADPglucose pyrophosphorylase (AGPase) mutant gene from Escherichia coli in rice endosperm resulted in enhanced starch synthesis and, in turn, higher seed weights. In this study, the levels of the major primary carbon metabolites were assessed in wild type and four transgenic CS8 rice lines expressing 3- to 6-fold higher AGPase activity. Consistent with the increase in AGPase activity, all four transgenic CS8 lines showed elevated levels of ADPglucose (ADPglc) although the extent of increases in this metabolite was much higher than the extent of increases in starch as measured by seed weight. Surprisingly, the levels of several other key intermediates were significantly altered. Glucose 1-phosphate (Glc 1-P), a substrate of the AGPase reaction, as well as UDPglucose and Glc 6-P were also elevated to the same relative extent in the transgenic lines compared with the wild-type control. Analysis of metabolite ratios showed no significant differences between the wild type and transgenic lines, indicating that the reactions leading from sucrose metabolism to ADPglc formation were in near equilibrium. Moreover, glucose and fructose levels were also elevated in three transgenic lines that showed the largest differences in metabolites and seed weight over the wild type, suggesting the induction of invertase. Overall, the results indicate that the AGPase-catalyzed reaction is no longer limiting in the transgenic lines, and constraints on carbon flux into starch are downstream of ADPglc formation, resulting in an elevation of precursors upstream of ADPglc formation.


FEBS Letters | 2000

Isolation and characterization of a higher plant ADP‐glucose pyrophosphorylase small subunit homotetramer

Peter R. Salamone; Thomas W. Greene; Ibrahim Halil Kavakli; Thomas W. Okita

ADP‐glucose pyrophosphorylase (AGPase) is the allosterically regulated gateway for carbon entry into transient and storage starch in plants as well as glycogen in bacteria. This enzyme plays a key role in the modulation of photosynthetic efficiency in source tissues and directly determines the level of storage starch in sink tissues, thus influencing overall crop yield potential. AGPase is a tetrameric enzyme; in higher plants it consists of two regulatory large subunits (LS) and two catalytic small subunits (SS), while in cyanobacteria and prokaryotes the enzyme is homotetrameric. The potato SS gene in pML10 was mutated by hydroxylamine and mutants were screened for elevated homotetrameric activity by iodine vapor staining. This search strategy led to the isolation of SS mutants (SUP‐1, TG‐15) that had pyrophosphorylase activity in the absence of the LS. TG‐15 has a leucine to phenylalanine change at position 48 (L48F) that corresponds to a phenylalanine residue at the analogous position in the Escherichia coli homotetrameric AGPase as well as a valine to isoleucine change at position 59 (V59I). TG‐15 was partially purified and kinetic analysis revealed substrate and effector affinities equal to wild type heterotetrameric enzyme with the exception of ATP binding.


Plant Physiology | 1996

Aspartic acid 413 is important for the normal allosteric functioning of ADP-glucose pyrophosphorylase

Thomas W. Greene; Ronald L. Woodbury; Thomas W. Okita

As part of a structure-function analysis of the higher-plant ADP-glucose pyrophosphorylase (AGP), we used a random mutagenesis approach in combination with a novel bacterial complementation system to isolate over 100 mutants that were defective in glycogen production (T.W. Greene, S.E. Chantler, M.L. Khan, G.F. Barry, J. Preiss, T.W. Okita [1996] Proc Natl Acad Sci USA 93: 1509–1513). One mutant of the large subunit M27 was identified by its capacity to only partially complement a mutation in the structural gene for the bacterial AGP (glg C), as determined by its light-staining phenotype when cells were exposed to I2 vapors. Enzyme-linked immunosorbent assay and enzymatic pyrophosphorylysis assays of M27 cell extracts showed that the level of expression and AGP activity was comparable to those of cells that expressed the wild-type recombinant enzyme. Kinetic analysis indicated that the M27 AGP displays normal Michaelis constant values for the substrates glucose-1-phosphate and ATP but requires 6- to 10-fold greater levels of 3-phosphoglycerate (3-PGA) than the wild-type recombinant enzyme for maximum activation. DNA sequence analysis showed that M27 contains a single point mutation that resulted in the replacement of aspartic acid 413 to alanine. Substitution of a lysine residue at this site almost completely abolished activation by 3-PGA. Aspartic acid 413 is adjacent to a lysine residue that was previously identified by chemical modification studies to be important in the binding of 3-PGA (K. Ball, J. Preiss [1994] J Biol Chem 269: 24706–24711). The kinetic properties of M27 corroborate the importance of this region in the allosteric regulation of a higher-plant AGP.

Collaboration


Dive into the Thomas W. Greene's collaboration.

Top Co-Authors

Avatar

Thomas W. Okita

Washington State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jack Preiss

Michigan State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge