Thomas W. H. Liebrand
Wageningen University and Research Centre
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Thomas W. H. Liebrand.
Proceedings of the National Academy of Sciences of the United States of America | 2013
Thomas W. H. Liebrand; G. C. M. van den Berg; Zhao Zhang; P. Smit; J. H. G. Cordewener; A. H. P. America; Jan Sklenar; Alexandra M. E. Jones; W. I. L. Tameling; Silke Robatzek; Bart P. H. J. Thomma; Matthieu H. A. J. Joosten
The plant immune system is activated by microbial patterns that are detected as nonself molecules. Such patterns are recognized by immune receptors that are cytoplasmic or localized at the plasma membrane. Cell surface receptors are represented by receptor-like kinases (RLKs) that frequently contain extracellular leucine-rich repeats and an intracellular kinase domain for activation of downstream signaling, as well as receptor-like proteins (RLPs) that lack this signaling domain. It is therefore hypothesized that RLKs are required for RLPs to activate downstream signaling. The RLPs Cf-4 and Ve1 of tomato (Solanum lycopersicum) mediate resistance to the fungal pathogens Cladosporium fulvum and Verticillium dahliae, respectively. Despite their importance, the mechanism by which these immune receptors mediate downstream signaling upon recognition of their matching ligand, Avr4 and Ave1, remained enigmatic. Here we show that the tomato ortholog of the Arabidopsis thaliana RLK Suppressor Of BIR1-1/Evershed (SOBIR1/EVR) and its close homolog S. lycopersicum (Sl)SOBIR1-like interact in planta with both Cf-4 and Ve1 and are required for the Cf-4– and Ve1-mediated hypersensitive response and immunity. Tomato SOBIR1/EVR interacts with most of the tested RLPs, but not with the RLKs FLS2, SERK1, SERK3a, BAK1, and CLV1. SOBIR1/EVR is required for stability of the Cf-4 and Ve1 receptors, supporting our observation that these RLPs are present in a complex with SOBIR1/EVR in planta. We show that SOBIR1/EVR is essential for RLP-mediated immunity and propose that the protein functions as a regulatory RLK of this type of cell-surface receptors.
Trends in Plant Science | 2014
Thomas W. H. Liebrand; Harrold A. van den Burg; Matthieu H. A. J. Joosten
Leucine-rich repeat-receptor-like proteins (LRR-RLPs) are ubiquitous cell surface receptors lacking a cytoplasmic signalling domain. For most of these LRR-RLPs, it remained enigmatic how they activate cellular responses upon ligand perception. Recently, the LRR-receptor-like kinase (LRR-RLK) SUPPRESSOR OF BIR1-1 (SOBIR1) was shown to be essential for triggering defence responses by certain LRR-RLPs that act as immune receptors. In addition to SOBIR1, the regulatory LRR-RLK BRI1-ASSOCIATED KINASE-1 (BAK1) is also required for LRR-RLP function. Here, we compare the roles of SOBIR1 and BAK1 as regulatory LRR-RLKs in immunity and development. BAK1 has a general regulatory role in plasma membrane-associated receptor complexes comprising LRR-RLPs and/or LRR-RLKs. By contrast, SOBIR1 appears to be specifically required for the function of receptor complexes containing LRR-RLPs.
Plant Physiology | 2014
Lisha Zhang; Ilona Kars; Bert Essenstam; Thomas W. H. Liebrand; Lia Wagemakers; Joyce Elberse; Panagiota Tagkalaki; Devlin Tjoitang; Guido Van den Ackerveken; Jan A. L. van Kan
Fungal pectin-degrading enzymes act as microbe-associated molecular patterns that are recognized by a pattern recognition receptor from Arabidopsis. Plants perceive microbial invaders using pattern recognition receptors that recognize microbe-associated molecular patterns. In this study, we identified RESPONSIVENESS TO BOTRYTIS POLYGALACTURONASES1 (RBPG1), an Arabidopsis (Arabidopsis thaliana) leucine-rich repeat receptor-like protein, AtRLP42, that recognizes fungal endopolygalacturonases (PGs) and acts as a novel microbe-associated molecular pattern receptor. RBPG1 recognizes several PGs from the plant pathogen Botrytis cinerea as well as one from the saprotroph Aspergillus niger. Infiltration of B. cinerea PGs into Arabidopsis accession Columbia induced a necrotic response, whereas accession Brno (Br-0) showed no symptoms. A map-based cloning strategy, combined with comparative and functional genomics, led to the identification of the Columbia RBPG1 gene and showed that this gene is essential for the responsiveness of Arabidopsis to the PGs. Transformation of RBPG1 into accession Br-0 resulted in a gain of PG responsiveness. Transgenic Br-0 plants expressing RBPG1 were equally susceptible as the recipient Br-0 to the necrotroph B. cinerea and to the biotroph Hyaloperonospora arabidopsidis. Pretreating leaves of the transgenic plants with a PG resulted in increased resistance to H. arabidopsidis. Coimmunoprecipitation experiments demonstrated that RBPG1 and PG form a complex in Nicotiana benthamiana, which also involves the Arabidopsis leucine-rich repeat receptor-like protein SOBIR1 (for SUPPRESSOR OF BIR1). sobir1 mutant plants did not induce necrosis in response to PGs and were compromised in PG-induced resistance to H. arabidopsidis.
Nature plants | 2015
Juan Du; Estelle Verzaux; Angela Chaparro-Garcia; Gerard Bijsterbosch; L. C. Paul Keizer; Ji Zhou; Thomas W. H. Liebrand; Conghua Xie; Francine Govers; Silke Robatzek; Edwin van der Vossen; E. Jacobsen; Richard G. F. Visser; Sophien Kamoun; Vivianne G. A. A. Vleeshouwers
Potato late blight, caused by the destructive Irish famine pathogen Phytophthora infestans, is a major threat to global food security1,2. All late blight resistance genes identified to date belong to the coiled-coil, nucleotide-binding, leucine-rich repeat class of intracellular immune receptors3. However, virulent races of the pathogen quickly evolved to evade recognition by these cytoplasmic immune receptors4. Here we demonstrate that the receptor-like protein ELR (elicitin response) from the wild potato Solanum microdontum mediates extracellular recognition of the elicitin domain, a molecular pattern that is conserved in Phytophthora species. ELR associates with the immune co-receptor BAK1/SERK3 and mediates broad-spectrum recognition of elicitin proteins from several Phytophthora species, including four diverse elicitins from P. infestans. Transfer of ELR into cultivated potato resulted in enhanced resistance to P. infestans. Pyramiding cell surface pattern recognition receptors with intracellular immune receptors could maximize the potential of generating a broader and potentially more durable resistance to this devastating plant pathogen.
Plant Physiology | 2012
Thomas W. H. Liebrand; P. Smit; Ahmed Abd-El-Haliem; R. de Jonge; J. H. G. Cordewener; A. H. P. America; Jan Sklenar; Alexandra M. E. Jones; Silke Robatzek; Bart P. H. J. Thomma; W. I. L. Tameling; Matthieu H. A. J. Joosten
Cf proteins are receptor-like proteins (RLPs) that mediate resistance of tomato (Solanum lycopersicum) to the foliar pathogen Cladosporium fulvum. These transmembrane immune receptors, which carry extracellular leucine-rich repeats that are subjected to posttranslational glycosylation, perceive effectors of the pathogen and trigger a defense response that results in plant resistance. To identify proteins required for the functionality of these RLPs, we performed immunopurification of a functional Cf-4-enhanced green fluorescent protein fusion protein transiently expressed in Nicotiana benthamiana, followed by mass spectrometry. The endoplasmic reticulum (ER) heat shock protein70 binding proteins (BiPs) and lectin-type calreticulins (CRTs), which are chaperones involved in ER-quality control, were copurifying with Cf-4-enhanced green fluorescent protein. The tomato and N. benthamiana genomes encode four BiP homologs and silencing experiments revealed that these BiPs are important for overall plant viability. For the three tomato CRTs, virus-induced gene silencing targeting the plant-specific CRT3a gene resulted in a significantly compromised Cf-4-mediated defense response and loss of full resistance to C. fulvum. We show that upon knockdown of CRT3a the Cf-4 protein accumulated, but the pool of Cf-4 protein carrying complex-type N-linked glycans was largely reduced. Together, our study on proteins required for Cf function reveals an important role for the CRT ER chaperone CRT3a in the biogenesis and functionality of this type of RLP involved in plant defense.
PLOS ONE | 2014
Emilie F. Fradin; Zhao Zhang; Hanna Rovenich; Yin Song; Thomas W. H. Liebrand; Laura Masini; Grardy C. M. van den Berg; Matthieu H. A. J. Joosten; Bart P. H. J. Thomma
Resistance in tomato against race 1 strains of the fungal vascular wilt pathogens Verticillium dahliae and V. albo-atrum is mediated by the Ve locus. This locus comprises two closely linked inversely oriented genes, Ve1 and Ve2, which encode cell surface receptors of the extracellular leucine-rich repeat receptor-like protein (eLRR-RLP) type. While Ve1 mediates Verticillium resistance through monitoring the presence of the recently identified V. dahliae Ave1 effector, no functionality for Ve2 has been demonstrated in tomato. Ve1 and Ve2 contain 37 eLRRs and share 84% amino acid identity, facilitating investigation of Ve protein functionality through domain swapping. In this study it is shown that Ve chimeras in which the first thirty eLRRs of Ve1 were replaced by those of Ve2 remain able to induce HR and activate Verticillium resistance, and that deletion of these thirty eLRRs from Ve1 resulted in loss of functionality. Also the region between eLRR30 and eLRR35 is required for Ve1-mediated resistance, and cannot be replaced by the region between eLRR30 and eLRR35 of Ve2. We furthermore show that the cytoplasmic tail of Ve1 is required for functionality, as truncation of this tail results in loss of functionality. Moreover, the C-terminus of Ve2 fails to activate immune signaling as chimeras containing the C-terminus of Ve2 do not provide Verticillium resistance. Furthermore, Ve1 was found to interact through its C-terminus with the eLRR-containing receptor-like kinase (eLRR-RLK) interactor SOBIR1 that was recently identified as an interactor of eLRR-RLP (immune) receptors. Intriguingly, also Ve2 was found to interact with SOBIR1.
Molecular Plant Pathology | 2014
Thomas W. H. Liebrand; Anja Kombrink; Zhao Zhang; Jan Sklenar; Alexandra M. E. Jones; Silke Robatzek; Bart P. H. J. Thomma; Matthieu H. A. J. Joosten
The tomato receptor-like protein (RLP) Ve1 mediates resistance to the vascular fungal pathogen Verticillium dahliae. To identify the proteins required for Ve1 function, we transiently expressed and immunopurified functional Ve1-enhanced green fluorescent protein (eGFP) from Nicotiana benthamiana leaves, followed by mass spectrometry. This resulted in the identification of peptides originating from the endoplasmic reticulum (ER)-resident chaperones HSP70 binding proteins (BiPs) and a lectin-type calreticulin (CRT). Knock-down of the different BiPs and CRTs in tomato resulted in compromised Ve1-mediated resistance to V. dahliae in most cases, showing that these chaperones play an important role in Ve1 functionality. Recently, it has been shown that one particular CRT is required for the biogenesis of the RLP-type Cladosporium fulvum resistance protein Cf-4 of tomato, as silencing of CRT3a resulted in a reduced pool of complex glycosylated Cf-4 protein. In contrast, knock-down of the various CRTs in N. benthamiana or N. tabacum did not result in reduced accumulation of mature complex glycosylated Ve1 protein. Together, this study shows that the BiP and CRT ER chaperones differentially contribute to Cf-4- and Ve1-mediated immunity.
Molecular Plant Pathology | 2016
Guozhi Bi; Thomas W. H. Liebrand; Ruby R. Bye; Jelle Postma; Aranka M. van der Burgh; Silke Robatzek; Xiangyang Xu; Matthieu H. A. J. Joosten
Receptor-like proteins (RLPs), forming an important group of transmembrane receptors in plants, play roles in development and immunity. RLPs contain extracellular leucine-rich repeats (LRRs) and, in contrast with receptor-like kinases (RLKs), lack a cytoplasmic kinase required for the initiation of downstream signalling. Recent studies have revealed that the RLK SOBIR1/EVR (SUPPRESSOR OF BIR1-1/EVERSHED) specifically interacts with RLPs. SOBIR1 stabilizes RLPs and is required for their function. However, the mechanism by which SOBIR1 associates with RLPs and regulates RLP function remains unknown. The Cf immune receptors of tomato (Solanum lycopersicum), mediating resistance to the fungus Cladosporium fulvum, are RLPs that also interact with SOBIR1. Here, we show that both the LRR and kinase domain of SOBIR1 are dispensable for association with the RLP Cf-4, whereas the highly conserved GxxxGxxxG motif present in the transmembrane domain of SOBIR1 is essential for its interaction with Cf-4 and additional RLPs. Complementation assays in Nicotiana benthamiana, in which endogenous SOBIR1 levels were knocked down by virus-induced gene silencing, showed that the LRR domain as well as the kinase activity of SOBIR1 are required for the Cf-4/Avr4-triggered hypersensitive response (HR). In contrast, the LRRs and kinase activity of SOBIR1 are not required for facilitation of Cf-4 accumulation. Together, these results suggest that, in addition to being a stabilizing scaffold for RLPs, SOBIR1 is also required for the initiation of downstream signalling through its kinase domain.
Plant Signaling & Behavior | 2014
Guozhi Bi; Thomas W. H. Liebrand; Jan Cordewener; Antoine H.P. America; Xiangyang Xu; Matthieu H. A. J. Joosten
Plants employ a large number of receptors localizing to the cell surface to sense extracellular signals. Receptor-like proteins (RLPs) form an important group of such trans-membrane receptors, containing an extracellular domain which is involved in signal perception and a short cytoplasmic domain. In contrast to receptor-like kinases (RLKs), RLPs lack a cytoplasmic kinase domain. How intracellular signaling is triggered downstream of RLPs upon perception of an extracellular signal, is therefore still poorly understood. Recently, the RLK SOBIR1 (Suppressor Of BIR1–1) was identified as an essential regulatory RLK of various RLPs involved in plant immunity against fungal pathogens.1 Given that SOBIR1 appears to be a crucial component of RLP-containing complexes, we aimed to identify additional proteins interacting with SOBIR1. Here, we report on the immunopurification of a functional Arabidopsis thaliana (At)SOBIR1-yellow fluorescent protein (YFP) fusion protein stably expressed in Arabidopsis, followed by mass-spectrometry to identify co-purifying proteins. Interestingly, and in line with various studies showing interaction between RLPs and SOBIR1, we discovered that AtSOBIR1 interacts with AtRLP23, an RLP of which the function is currently unknown.
bioRxiv | 2015
Jelle Postma; Thomas W. H. Liebrand; Guozhi Bi; Alexandre Evrard; Ruby R. Bye; Malick Mbengue; Matthieu H. A. J. Joosten; Silke Robatzek
The first layer of plant immunity is activated by cell surface receptor-like kinases (RLKs) and proteins (RLPs) that detect infectious pathogens. Constitutive interaction with the RLK SUPPRESSOR OF BIR1 (SOBIR1) contributes to RLP stability and kinase activity. As RLK activation requires transphosphorylation with a second associated RLK, it remains elusive how RLPs initiate downstream signaling. To address this, we investigated functioning of Cf RLPs that mediate immunity of tomato against Cladosporium fulvum. We employed live-cell imaging and co-immunoprecipitation in tomato and Nicotiana benthamiana to investigate the requirement of associated kinases for Cf activity and ligand-induced subcellular trafficking of Cf-4. Upon elicitation with the matching effector ligands Avr4 and Avr9, BRI1-ASSOCIATED KINASE 1 (BAK1) associates with Cf-4 and Cf-9. Furthermore, Cf-4 that interacts with SOBIR1 at the plasma membrane, is recruited to late endosomes after elicitation. Significantly, BAK1 is required for Avr4-triggered endocytosis, effector-triggered defenses in Cf-4 plants and resistance of tomato against C. fulvum. Our observations indicate that RLP-mediated immune signaling and endocytosis require ligand-induced recruitment of BAK1, reminiscent of BAK1 interaction and subcellular fate of the FLAGELLIN SENSING 2 RLK. This reveals that diverse classes of cell surface immune receptors share common requirements for signaling initiation and endocytosis.