Thomas Wirth
Bundesanstalt für Materialforschung und -prüfung
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Thomas Wirth.
Microscopy and Microanalysis | 2011
Daniel Abou-Ras; R. Caballero; C.-H. Fischer; Christian A. Kaufmann; Iver Lauermann; R. Mainz; H. Mönig; A. Schöpke; C. Stephan; C. Streeck; Susan Schorr; A. Eicke; M. Döbeli; B. Gade; J. Hinrichs; Tim Nunney; H. Dijkstra; Volker Hoffmann; Denis Klemm; Varvara Efimova; A. Bergmaier; G. Dollinger; Thomas Wirth; Wolfgang E. S. Unger; A. Rockett; A. Pérez-Rodríguez; J. Álvarez-García; Victor Izquierdo-Roca; T. Schmid; Pyuck-Pa Choi
In a recent publication by Abou-Ras et al., various techniques for the analysis of elemental distribution in thin films were compared, using the example of a 2-µm thick Cu(In,Ga)Se2 thin film applied as an absorber material in a solar cell. The authors of this work found that similar relative Ga distributions perpendicular to the substrate across the Cu(In,Ga)Se2 thin film were determined by 18 different techniques, applied on samples from the same identical deposition run. Their spatial and depth resolutions, their measuring speeds, their availabilities, as well as their detection limits were discussed. The present work adds two further techniques to this comparison: laser-induced breakdown spectroscopy and grazing-incidence X-ray fluorescence analysis.The present work shows results on elemental distribution analyses in Cu(In,Ga)Se2 thin films for solar cells performed by use of wavelength-dispersive and energy-dispersive X-ray spectrometry (EDX) in a scanning electron microscope, EDX in a transmission electron microscope, X-ray photoelectron, angle-dependent soft X-ray emission, secondary ion-mass (SIMS), time-of-flight SIMS, sputtered neutral mass, glow-discharge optical emission and glow-discharge mass, Auger electron, and Rutherford backscattering spectrometry, by use of scanning Auger electron microscopy, Raman depth profiling, and Raman mapping, as well as by use of elastic recoil detection analysis, grazing-incidence X-ray and electron backscatter diffraction, and grazing-incidence X-ray fluorescence analysis. The Cu(In,Ga)Se2 thin films used for the present comparison were produced during the same identical deposition run and exhibit thicknesses of about 2 μm. The analysis techniques were compared with respect to their spatial and depth resolutions, measuring speeds, availabilities, and detection limits.
Langmuir | 2011
Paul M. Dietrich; Tim Horlacher; Pierre-Luc Girard-Lauriault; Thomas Gross; Andreas Lippitz; Hyegeun Min; Thomas Wirth; Riccardo Castelli; Peter H. Seeberger; Wolfgang E. S. Unger
Carbohydrate films on gold based on dimannoside thiols (DMT) were prepared, and a complementary surface chemical analysis was performed in detail by X-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (ToF-SIMS), near-edge X-ray absorption fine structure (NEXAFS), FT-IR, and contact angle measurements in order to verify formation of ω-carbohydrate-functionalized alkylthiol films. XPS (C 1s, O 1s, and S 2p) reveals information on carbohydrate specific alkoxy (C-O) and acetal moieties (O-C-O) as well as thiolate species attached to gold. Angle-resolved synchrotron XPS was used for chemical speciation at ultimate surface sensitivity. Angle-resolved XPS analysis suggests the presence of an excess top layer composed of unbound sulfur components combined with alkyl moieties. Further support for DMT attachment on Au is given by ToF-SIMS and FT-IR analysis. Carbon and oxygen K-edge NEXAFS spectra were interpreted by applying the building block model supported by comparison to data of 1-undecanethiol, poly(vinyl alcohol), and polyoxymethylene. No linear dichroism effect was observed in the angle-resolved C K-edge NEXAFS.
Journal of Analytical Atomic Spectrometry | 2010
Mathias Senoner; Thomas Wirth; Wolfgang E. S. Unger
Lateral resolution, also called image resolution, is the most relevant quality parameter of maps and line scans. Therefore well defined procedures for the determination of lateral resolution are required. In the surface analysis community different definitions of lateral resolution are in use and there is no generally accepted method for the determination of lateral resolution which meets the demands of the state-of-the-art in surface analysis. We propose the determination of lateral resolution by imaging of well defined square-wave gratings with finely graded periods. This method enables the real time estimation of lateral resolution and the adjustment of instrument settings with respect to lateral resolution. The effect of noise and contrast on lateral resolution has been analysed by numerically simulated images of square-wave gratings. A new resolution criterion has been developed which is based on the dip-to-noise ratio and takes into account the sampling step width by introducing a “reduced noise”. The contrast transfer function has been introduced and its relation to lateral resolution in the presence of noise was analysed. For that reason an “effective cut-off frequency” was defined which is the reciprocal of the lateral resolution. Normalized values of lateral resolution and their relation to signal-to-noise ratio and sampling step width were given for Gaussian and Lorentzian line spread functions. These values enable the calculation of experimental parameters which are necessary to get a required value of lateral resolution. Finally the successful application of the proposed approach to determine lateral resolution has been demonstrated by ToF-SIMS element mapping of the certified reference material BAM-L200.
RSC Advances | 2014
Steffi Rades; Vasile-Dan Hodoroaba; Tobias Salge; Thomas Wirth; M. Pilar Lobera; Roberto Hanoi Labrador; Kishore Natte; Thomas Behnke; Thomas Gross; Wolfgang E. S. Unger
The combination of complementary characterization techniques such as SEM (Scanning Electron Microscopy), T-SEM (Scanning Electron Microscopy in Transmission Mode), EDX (Energy Dispersive X-ray Spectroscopy) and SAM (Scanning Auger Microscopy) has been proven to be a powerful and relatively quick characterization strategy for comprehensive morphological and chemical characterization of individual silica and titania nanoparticles. The selected “real life” test materials, silica and titania, are listed in the OECD guidance manual as representative examples because they are often used as commercial nanomaterials. Imaging by high resolution SEM and in the transmission mode by T-SEM allows almost simultaneous surface and in-depth inspection of the same particle using the same instrument. EDX and SAM enable the chemical characterization of bulk and surface of individual nanoparticles. The core–shell properties of silica based materials are addressed as well. Titania nominally coated by silane purchased from an industrial source has been found to be inhomogeneous in terms of chemical composition.
Analytical and Bioanalytical Chemistry | 2009
Nora Graf; Thomas Gross; Thomas Wirth; Wilfried Weigel; Wolfgang E. S. Unger
AbstractThe chemical composition of the functional surfaces of substrates used for microarrays is one of the important parameters that determine the quality of a microarray experiment. In addition to the commonly used contact angle measurements to determine the wettability of functionalized supports, X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) are more specific methods to elucidate details about the chemical surface constitution. XPS yields information about the atomic composition of the surface, whereas from ToF-SIMS, information on the molecular species on the surface can be concluded. Applied on printed DNA microarrays, both techniques provide impressive chemical images down to the micrometer scale and can be utilized for label-free spot detection and characterization. Detailed information about the chemical constitution of single spots of microarrays can be obtained by high-resolution XPS imaging. FigureEye-catching image for the graphical online abstract
Thin Solid Films | 1996
Uwe Beck; Georg Reiners; Thomas Wirth; Volker Hoffmann; F. Präßler
Depth profiles of layer systems consisting of different film materials and having different thicknesses are of great practical importance. Multilayer reference coatings of conducting (Ti/Al) and non-conducting (SiO2/Si3N4) material are analyzed with Auger electron spectroscopy (AES) and glow discharge optical emission spectroscopy (GDOES) depth profiling. Deposition techniques, physical vapor deposition for Ti/Al layers and plasma-enhanced chemical vapor deposition for SiO2/Si3N4 layers, as well as measurement and testing procedures for the determination of layer thickness such as optical and mechanical stylus and spectroscopie ellipsometry are discussed. GDOES depth profiles in direct current (d.c.) and radio frequency (r.f.) mode are related to measurements of crater profiles and compared with line scans and depth profiles performed by AES. It is shown that such multilayer reference systems are appropriate for calibration of depth profiles, i.e. the definition and the evaluation of the depth resolution at the interface, the determination of sputter rates both for d.c.- and r.f.-GDOES and AES, the optimization of the conditions of analysis, and the quantification of analysis itself.
Journal of Carbohydrate Chemistry | 2011
Paul M. Dietrich; Tim Horlacher; Pierre-Luc Girard-Lauriault; Thomas Gross; Andreas Lippitz; Hyegeun Min; Thomas Wirth; A. G. Shard; Riccardo Castelli; Peter H. Seeberger; Wolfgang E. S. Unger
A combined XPS, NEXAFS, and ToF-SIMS chemical surface characterization of carbohydrate-functionalized gold and glass surfaces is presented. Spot shape and chemical composition across a spot surface are provided by surface-sensitive methods as ToF-SIMS and XPS, used in their imaging modes. Moreover, the feasibility of this multimethod approach to control relevant production steps of a carbohydrate microarray prototype is demonstrated.
Metrologia | 2010
Kyung Joong Kim; Jeong Won Kim; Dae Won Moon; Thomas Wirth; Vasile-Dan Hodoroaba; Thomas Gross; Wolfgang E. S. Unger; Werner Jordaan; Martin Van Staden; Sara Prins; Hai Wang; Xiaoping Song; Lulu Zhang; Toshiyuki Fujimoto; Isao Kojima
The Key Comparison K67 and the parallel Pilot Study P108 on quantitative analysis of thin alloy films have been completed in the Surface Analysis Working Group (SAWG) of the Consultative Committee for Amount of Substance (CCQM). The aim of these inter-laboratory comparisons is to determine the degree of equivalence in the measurement capability of national metrology institutes (NMIs) and designated institutes (DIs) for the determination of the composition of thin alloy films. The measurand is expressed in atomic percent. A Fe–Ni alloy film with a certified composition was available for the participants of the inter-laboratory comparison. It has been used as a reference specimen to determine the relative sensitivity factors (RSF) of Fe and Ni for the different analytical methods used by the participants to determine the composition of the test sample. As was shown in the preceding Pilot Study P98, the degrees of equivalence in the measurement capabilities of the participants can be improved in that way. The composition of the reference specimen was certified by inductively coupled plasma mass spectrometry (ICP-MS) using the isotope dilution method. The in-depth and lateral homogeneity, determined in terms of elemental composition, of the certified reference sample and the unknown test sample were confirmed by secondary ion mass spectrometry (SIMS) using C60 primary ions by the leading laboratory. Five laboratories participated in the key comparison. Four of them used x-ray photoelectron spectroscopy (XPS) and one Auger electron spectroscopy (AES). One laboratory participated in the parallel P108 pilot study using electron probe micro analysis with an energy-dispersive spectrometer (ED EPMA) and XPS. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCQM, according to the provisions of the CIPM Mutual Recognition Arrangement (MRA).
Journal of Applied Physics | 2017
Sabrina V. Kirner; Thomas Wirth; Heinz Sturm; Jörg Krüger; J. Bonse
The chemical characteristics of two different types of laser-induced periodic surface structures (LIPSS), so-called high and low spatial frequency LIPSS (HSFL and LSFL), formed upon irradiation of titanium surfaces by multiple femtosecond laser pulses in air (30 fs, 790 nm, 1 kHz), are analyzed by various optical and electron beam based surface analytical techniques, including micro-Raman spectroscopy, energy dispersive X-ray analysis, X-ray photoelectron spectroscopy, and Auger electron spectroscopy. The latter method was employed in a high-resolution mode being capable of spatially resolving even the smallest HSFL structures featuring spatial periods below 100 nm. In combination with an ion sputtering technique, depths-resolved chemical information of superficial oxidation processes was obtained, revealing characteristic differences between the two different types of LIPSS. Our results indicate that a few tens of nanometer shallow HSFL are formed on top of a ∼150 nm thick graded superficial oxide layer ...
Fresenius Journal of Analytical Chemistry | 1993
H. Hantsche; D. Schmidt; M. Golze; A. Zabinski; J. Eckardt; Thomas Wirth
SummaryThe application properties of steel can be improved considerably by alloying with nitrogen which may present both as dissolved nitrogen and as nitride precipitate often in combination with other elements (TiN, AlN, Fe4N, Si3N4, CrN and VN). For a complete analytical description of a steel it is desirable to distinguish between dissolved N and precipitated nitride. The size of the precipitates vary from several micrometers down to a few nanometers. Investigations of microstructures in steel using an electron microprobe are limited to a particle size of approximately 1 μm. The exploration of the sub-micron area down to 35 nm particle diameter has been carried out using an Auger microprobe. After optimizing all parameters influencing the results of the measurements and the limits of the method, the identification and counting of precipitates in the submicron range is possible in a reasonably short time if an improved technique with a field emission gun and parallel detection is used. Great care has to be taken with the interpretation of elemental distribution images and line scans across a particle because a number of geometrical and backscatter effects influence the final result.